TropWATER

Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data

Michelle Devlin¹, Caroline Petus¹, Eduardo da Silva¹, Dieter Tracey¹

TropWATER, James Cook University, Townsville

Why?

- The long-term goal of Reef Plan is to ensure that the quality of water entering the Great Barrier Reef from adjacent catchments has no detrimental impact on its ecosystem health and resilience
- Requires a monitoring and evaluation strategy that
 - evaluates the efficiency and effectiveness of implementation and
 - progress toward this goal.
- Monitoring activities under the <u>Marine Monitoring Program</u> include ambient and <u>wet season water quality measurements</u>, inshore coral and seagrass monitoring and herbicide detection.

- Monitoring of river plumes and assessment of the influence of water quality events now forms an integral component of the MMP.
- Difficult to evaluate the complex responses to changing water quality based on in-situ water quality data only

WHAT?

TropWATER

GREAT BARRIER REEF

AUSTRALIA

MODIS DATA:

✓ Key source of data
 ✓ Synoptic view of the ocean
 ✓ Daily observations from 2002
 ✓ Resolution: 250 - 1000 m
 =
 SUBSTANTIAL BENEFITS
 IN ADDITION TO IN-SITU
 SAMPLING AND NUMERICAL
 MODELLING

How? Where?

TropWATER

- RGB /true colour analysis –
 critical source of data for
 plume dynamics
- Correlation of true colour with in-situ water quality gradient can provide links to the GBR ecological systems

- Provides the information on relevant timescales associated with the variability associated with these transport processes
- Greater certainty of obtaining a complete spatial and temporal picture over wet season.

Where?

 Tropwater
 To the end of the plumes and back

Marine Park Authority

MAIN PROJECT: flood plume monitoring part of the Marine Monitoring Program

Mapping of flood plumes

1.

Modelling and summarizing landsourced contaminants transport and light evels within river plume waters, and;

Marine Park Authority

valuation of the susceptibility of GBR key cosystems to river plume exposure

MAIN OBJECTIVES:

MAPPING OF GBR FLOOD PLUMES AND PLUME WATER MASSES: using a supervised classification of MODIS true colour images

Map the MOVEMENTS of river plumes in the Great Barrier Reef

Map the FREQUENCY of river plumes during the wet season

Objective 2. Models summarizing land-sourced CONTAMINANTS TRANSPORT AND LIGHT LEVELS within river plume waters

WET SEASON WATER QUALITY MAPS

Plume water masses = different concentrations & proportions of :

- land-sourced pollutants
 - Optically Active Components

LAND-SOURCED CONTAMINATION MAPS

Petus et al., in Prep.

Broad scale approach to reporting contaminant concentrations in the GBR marine environment

hydrodynamic model

http://www2.hawaii.edu/

in situ data

DIN Load

Dispersion

Annual River Load

CONCEPTUAL MODEL OF THE DIN LOAD DISPERSION MAPS: DATA SOURCES AND MAIN PROCESSES

DIN DISTRIBUTION & PLUME DISTANCE MODELS

Regression models adjusted to (**a**) in-situ DIN and plume color class (1 - 6) sampled from 2003 to 2013, under flow conditions > 75th percentile, and (**b**) plume distance and river discharge from the hydrodynamic model. Dashed lines stand for CI 95%. Red dots stand for outliers.

DIN (Mass/Area)

DIN load and its contribution to the marine NRM regions

NRM region	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	644	718	1510	1127	3488	7899	9256	2820	10348	5171	1197
Burdekin	731	920	1465	1385	3074	5138	5761	3055	8957	4196	1687
	(13%)	(28%)	(-3%)	(23%)	(-12%)	(-35%)	(-38%)	(8%)	(-13%)	(-19%)	(41%)
	1380	3706	2298	4530	4046	3770	5914	3648	9697	5144	3299
Wet Tropics	1302	3004	2143	3742	3769	4709 5983 3565		9748	5151	2909	
	(-6%)	(-19%)	(-7%)	(-17%)	(-7%)	(25%)	(1%)	(-2%)	(1%)	(0%)	(-12%)
	305	117	531	274	1477	2482	1807	2502	5466	2604	1656
Mackay-Whitsunday	433	176	493	186	1278	2971	2380	2580	4641	2548	1525
	(42%)	(50%)	(-7%)	(-32%)	(-13%)	(20%)	(32%)	(3%)	(-15%)	(-2%)	(-8%)
	674	382	363	135	176	1580	367	2061	3900	947	920
Fitzroy	412	257	257	103	121	834	354	1088	1738	517	502
	→ (-39%)	(-33%)	(-29%)	(-24%)	(-31%)	(-47%)	(-3%)	(-47%)	(-55%)	(-45%)	(-45%)

- RIVER LOAD (TON): DIN MASS DISCHARGED BY THE RIVER

----- NRM MASS (TON): DIN MASS THAT REMAINS AT THE NRM RIVER BELONGS TO

DIFFERENCE (%): (NRM MASS - RIVER LOAD)/RIVER LOAD * 100

Grey > 10% increase

MAIN PROJECT: flood plume monitoring part of the Marine Monitoring Program

Mapping of flood plumes

1.

2.

Modelling and summarizing landsourced contaminants transport and light levels within river plume waters, and;

Marine Park Authority

Evaluation of the susceptibility of GBR key ecosystems to the river plume exposure

tropwater.com

MAIN OBJECTIVES:

Evaluation of the SUSCEPTIBILITY OF GBR KEY ECOSYSTEMS to river plume exposure

• Using MODIS data for understanding changes in seagrass meadow health.

	N	darine Environmental Research 98 (2014	i) 68–85 nceDirect	Martin Barrinomental Research
	Mar	ine Environmenta	ll Research	Internet
ELSEVIER	journal ho	erstanding change	es in seagrass mea ef (Australia)	ndow OcrossMark
Using MOI health: A	DIS data for care case study in th us ^{a,*} , Catherine Colli	e Great Barrier er ^b , Michelle Devlin ^a , M earch, Catchment to Reef Research Grou historisty, Townsville, OLD 4811, Australia inversity, Townsville, OLD 4811, Australia	Aichael Rasheed ^C , SKyce p. Jones Cook University. Townsville, O a Cook University, PO Box 6811, Cairus O	LD 4811, Australia 9,D 4870, Austrolia
*Centre for Tropical bSchool of Marine <centre for="" td="" tropical<=""><td>Water and Aquations, James Cook C nd Tropical Biology, James Cook C Water and Aquatic Ecosystem Re E INFO</td><td>A B S T R A C T Stratching more than 2000 b</td><td>m share the Aurometered easer a</td><td>ha Ceat Darriar Boof Mixina Dark (CB</td></centre>	Water and Aquations, James Cook C nd Tropical Biology, James Cook C Water and Aquatic Ecosystem Re E INFO	A B S T R A C T Stratching more than 2000 b	m share the Aurometered easer a	ha Ceat Darriar Boof Mixina Dark (CB
ARTICO Article history				

- Critical for management
 - Strong application of the true colour data over annual and multi-annual time scales

Evaluation of the SUSCEPTIBILITY OF GBR KEY ECOSYSTEMS to river plume exposure

Petus et al., 2014b

Develop satellite risk framework and river plume risk maps

et al., in review, Devlin et al., 2015.

in situ data

remotely-sensed data

Monitoring data

Coral

Seagrass

Multi-Annual Risk maps

CONCEPTUAL MODEL OF RIVER PLUME RISK MAPS: DATA SOURCES (2005 TO 2014) AND MAIN PROCESSES

River plume risk score

TropWATER

									SCORES (/area):				
Land cont	-sourced aminant			TSS	Chl-a	PSII-Heq		ΣR _{CC} *1		<u>М</u> М	A <u>GNITUI</u> Scc (0-1	<u>DE</u> × D)	<u>LIKELIHOOD</u> Fcc (0-1)
Concentration in plume waters Cont. _{cc} (mean 2005-2015)	CC1	•		51.00	2.90	0.04		13.7	- •		10	×	0.4
	CC2	•		19.0	2.1	0.03		7.4	- •	•	4	×	0.4
	CC3	•		17.2	2.3	0.03		7.6	- •	•	5	×	0.5
	CC4	•		10.5	1.5	0.02		4.8	- •	•	2	×	0.2
	CC5	•		8.4	0.9	0.01		3.2	- •	•	1	×	0.2
	CC6	•		8.4 ▲	0.5	0.01		2.3	- >	•	0	×	0.1
<u>CONSEQUENCES</u> : Ecological threshold: Cont. _{thr}		7	↓ mg L ⁻¹	• 0.45 μg L ⁻¹	.1 μg L ⁻¹								

Multi-annual risk map for GBR seagrass ecosystems from river plume exposure

RS data provides - multiple products for wet season, plume monitoring and risk assessment

Michelle J. Devlin ^{1,*}, Caroline Petus ¹, Eduardo da Silva ¹, Dieter Tracey ¹, Nicholas H. Wolff ², Jane Waterhouse ¹ and Jon Brodie ¹

Understand uncertainty in chlorophyll a assessments from remote sensing (for WQIP's)

Petus et al., in Prep.

 Plotted |Bias| and % error against several TSS in-situ and satellite NAP concentrations and bathymetry levels

A trend toward an increase of uncertainties observed when the satellite NAP concentration increases and the bottom depth decreases; with thresholds values estimated around **satellite NAP = 2 mg L⁻¹ and depth = 25 metres**.

The errors and bias reported in this study are performance statistic for <u>the wet seasons and for flood plume</u> <u>waters only</u>.

Validation of the remote sensing Chl-a retrievals based on in-situ Chl-a samples collected mainly during the dry season have been presented in King et al., 2014 with stronger validation statistics i.e., E% = 89%.

Uncertainty map – draft!!

Preliminary indication of a Chl-a satellite confidence map based on the 25 metre bathymetry contour

Uncertainty

- Becoming a major issue due to the use of RS data in the WQ metric for GBR reporting
- Uncertainty not included in the first 3 years of Paddock to Reef Reporting. Only RS data included in metric
- High uncertainty in coastal areas.
- Higher uncertainty in Cape York, wet season
- Requires incorporating/understanding uncertainty when aggregating data into a WQ metric
- Still a balance
 - between the utility of large scale RS data adding to knowledge/assessment of state and
 - Recognition and incorporation of uncertainty into end products
 - Communication an issue when dealing with the requirements of managers and management agencies

Conclusions

- Ocean colour despite limitations has provided a valuable source of data in GBR monitoring
- Extended our knowledge of water quality gradients
- Improved risk assessment
- Integration of data in-situ, remote sensing, modelled increases the individual value of each different data set.

THANK YOU!

