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Hunting submesoscale eddies in the EAC
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Hunting submesoscale eddies in the EAC
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Sea-surface temperature reveal footprint of submesoscale flow:

* Passive microwave observations (subskin temperature) have
spatial resolutions of 20-50 km and can penetrate clouds

* Infrared observations (skin temperature) have spatial resolutions
of 1 km but are obscured by clouds



* Derive super-resolved SST images by combining microwave
images with statistical knowledge from infrared observations

* Exploit spatial aliasing of small scales by coarse observations
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Aliasing of sparse observations

N x N resolved modes A M x M resolved modes A

>k

Coarse-grid modes are superposition of _ EI/J -
fine-grid modes in same aliasing set. k.l Ly Tkl =
k,l



Filtering sparse observations

Observation: Low-resolution Forecast: Quasi-linear stochastic
observations with aliased model using parameters from
information about small scales available high-resolution obs
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Zonal velocity

Quasigeostrophic model driven by Forget (2010) hydrography.
Assume that surface density anomalies are dominated by SST.

Synthetic daily temperature observations over a 90-day period
with both microwave (40 km) and infrared (5 km) resolutions.

Infrared observations used to learn stochastic parameters.



Super-resolved SST

SST snapshots: Subtropical Pacific
True SST Observed SST Superesolved SST
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Upper ocean flow reconstruction

(a) PE relative vorticity at 430m (b) SQG prediction of relative vorticity at 430m
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Surface quasigeostrophic (SQG) model: Interior streamfunction
slaved to surface density/temperature (Lapeyre & Klein 2006)
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Streamfunction is smoothed version of temperature:
Microwave SST reconstructs flow with resolution of O(100) km.



Upper ocean flow reconstruction

True PV at 200m PV from perfect SST PV from observed SST PV from super-res SST
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* Lapeyre and Klein (2006): model interior PV with empirically
derived vertical profile function: q(x,y,z)=a(z) 6,,,(x,y)

* Even with perfect observations of SST, Surface QG methods have
a depth of validity varies regionally.

e Super-resolved SST results in improved subsurface stream-
function reconstruction compared with raw observations.



Conclusions
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learned from intermittent infrared

Combine coarse-resolution microwave SST images with a simple
statistical model to construct super-resolved SST images.

Upper ocean flow statistics can be derived by projecting SST
onto subsurface streamfunction

Plan to implement this with satellite data and compare with
existing SST products. Collaborators wanted!



Aliasing of sparse observations
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Fourier transform on fine grid: Fourier transform on coarse grid:
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Antarctic Circumpolar Current Gulf Stream Subtropical Pacific
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* Quasigeostrophic model driven by Forget (2010) hydrography.
 Assume that surface density anomalies are dominated by SST.

e Synthetic daily temperature observations over a 90-day period
with both microwave (40 km) and infrared (5 km) resolutions.

* Infrared observations used to learn stochastic parameters.



Temperature variance spectrum: <|9(k)|2>
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales



Super-resolved SST

Antarctic Circumpolar Current Gulf Stream
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales



Depth (m)

Upper ocean flow reconstruction

Kinetic energy Kinetic energy
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* Even with perfect observations of SST, SQG methods have a
depth of validity that varies regionally.

* Argues for inclusion of interior dynamics: Lapeyre (2009), Ponte
and Klein (2013), Wang et al. (2013).

However, super-resolved SST results in improved surface mode
reconstruction compared with raw observations.



Upper ocean flow reconstruction

Potential enstrophy at 100m (s7%) Normalized RMS error Cross-correlation
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* Lapeyre and Klein (2006): model interior PV with empirically
derived vertical profile function: ¢(x,y,z)=a(z) 0,,,(x,y)

* Even with perfect observations of SST, Surface QG methods have
a depth of validity varies regionally.

e Super-resolved SST results in improved subsurface stream-
function reconstruction compared with raw observations.



Sensitivity to clouds and observing period:

Normalized RMS error Normalized RMS error
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* Accuracy of small-scale statistics calculated using high-resolution
images depends on quality of data

 Model effect of imperfect data by randomly discarding frames
(“clouds”) or shortening observing period



Antarctic Circumpolar Current

Upper ocean flow reconstruction

Potential enstrophy at 100m (8'2)
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In general, observation will sample over a footprint given by sampling weight G(x,y)

0°° (x, y) = [G()/,y’) O(x—x',y—y")dx'dy’.

Coarse-grid Fourier transform is weighted by spectral transfer function
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07" (k)= G(k+iM,I+jM) O(k+iM, 1+jM),
ij=—oc

For a Gaussian sampling footprint of width .2, transfer function is a Gaussian of width 1/.2

e—(x2+y2')/2f2 G(p q)= o2 (PP +q7)% /12



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations

with an internal forecast model.

time

M x M observations of each resolved

mode + aliased modes




Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

1. Forecast step:

® Make prediction for N x N modes

/. using quasi-linear stochastic model.

9,0 =—(y—iw)0(t)+ oW (1)

® O Forecast mean and covariance:

<6>’ qu - <0;6q>

Tune parameters to give correct
energy and timescales estimated from
> infrared observations.

time



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

2. Update step:

O Combine N x N prediction (-) with
M x M observation (~) using Kalman
filter solution:

(6,)=(1-KG){0_)+ K6
R, =(1-KG)R.
Optimal solution when dynamics and

observation operator are linear with
> unbiased uncorrelated Gaussian noise.

time
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Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

3. Smoothing step:

® Apply Rauch-Tung-Straub smoother to
remove unphysical jumps.
(k, I+M) (k+M, 1+M)
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Resulting superresolved SST estimate
> is a pdf with an effective resolution
time given by model, not observations.




