

Himawari-8 Sea Surface Temperature from the Australian Bureau of Meteorology

Christopher Griffin¹, Leon Majewski¹

¹Observations and Infrastructure Division, Bureau of Meteorology, Melbourne

Satellite Oceanography Users Workshop, Melbourne, 9th November 2015

Introduction

- Why we need high resolution SST products ?
 - Small scale ocean current features
 - Coastal Applications
 - NWP / Ocean models moving to higher and higher resolutions better forecasts, better climate modelling
- Why Himawari-8 ?
 - Geostationary
 - "VIIRS / GOES / SEVIRI like" sensor
 - Timely SST
 - Diurnal effects visible (high temporal frequency)

World Meteorological Organization Weather • Climate • Water

Aims to provide the best quality SST data for applications in short, medium and decadal/climate time scales in the most cost effective and efficient manner through international collaboration and scientific innovation

Sets standards for satellite SST processing and formats (CF-compliant netCDF)

Shares satellite SST level 2 ("L2P") and level 3 ("L3") data products

- For each pixel: Time, lat, lon, SST(depth), error estimates (bias, standard deviation), quality level, wind speed, sea-ice fraction, land/ice/water flag, difference from SST climatology, etc
- Only satellite SST products that provide error estimates per pixel based on in situ matchups

Shares global and regional SST analysis products ("L4")

See web page at: http://www.ghrsst.org

What is provided

- "Full disk" L2P skin SST
 - One per satellite reception (up to every 10 min)
 - Nominally 2km resolution
- GHRSST format
 - Lossless, compressed netCDF4
 - Projection information follows CF conventions
- Pixel by pixel
 - Skin Sea Surface Temperature
 - Quality
 - Bias and standard deviation estimates

What is provided

What is provided

0 K (blue) ... 0.5 K (purple) ... 1.5 K (red)

-1 K (blue) ...1 K (red)

Using the data

- Check the quality_level
 - Not defined very cold cloud or land
 - 0 cloud
 - 1,2 likely cloudy or not accurately determined, or on the edge of view
 - 3,4,5 acceptable (higher quality has better accuracy)
 - quality_level is consistent over life
- Use (sea_surface_temperature sses_bias) for best results
 - sses_bias is typically very small for high quality pixels

"skin" vs "foundation" SST

Spatial / Temporal Resolution

Bureau of Meteorology

- Use Suomi-NPP / VIIRS SST (ACSPO) as a "standard" for Himawari-8 brightness temperatures
- Regress VIIRS SST against Himawari-8 infrared BTs
 - At a fixed "epoch" in the past
- Determine Himawari-8 SST from the regressed rule
- Validate against drifting buoys
 - At all "future" times
- {Adjust bias and standard deviation accordingly}
- {Repeat infrequently}

- Regressed Single (LRG2.12)
 - One equation for Day and Night
 - No day/night algebraic discontinuity
 - Long wave length infra-red
- Regressed Dual (LRG2.16)
 - One algorithm for Day
 - One algorithm for Night
 - Algorithms are independent
 - Shorter wave length infra-red can be used at night

AHI detector channels

http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/fig/AHI_SRF_IR_201309.png

 \sum

Single regression LRG2.12

$$SST = BT_9 (a_9 + g_9 (\sec(\theta_z) - 1)) + BT_{13} (a_{13} + g_{13} (\sec(\theta_z) - 1)) + BT_{14} (a_{14} + g_{14} (\sec(\theta_z) - 1)) + BT_{15} (a_{15} + g_{15} (\sec(\theta_z) - 1)) + T_0$$

Dual regression LRG2.16

$$SST_{day} = BT_9 (a_9 + g_9 (\sec(\theta_z) - 1)) + BT_{13} (a_{13} + g_{13} (\sec(\theta_z) - 1)) + BT_{14} (a_{14} + g_{14} (\sec(\theta_z) - 1)) + BT_{15} (a_{15} + g_{15} (\sec(\theta_z) - 1)) + T_0$$

$$SST_{\text{night}} = BT_7 (a_7 + g_7 (\sec(\theta_z) - 1)) + BT_{13} (a_{13} + g_{13} (\sec(\theta_z) - 1)) + BT_{14} (a_{14} + g_{14} (\sec(\theta_z) - 1)) + BT_{15} (a_{15} + g_{15} (\sec(\theta_z) - 1)) + T_0$$

GHRSST L2P LRG2.12 HW8 SST Single (Day and Night) Algorithm, daily (day time) Distribution Himawari-8, last 25 days, 2015-10-07 to 2015-10-31

Bureau of Meteorology

GHRSST L2P LRG2.12 HW8 SST Single (Day and Night) Algorithm, daily Biases Himawari-8, last 25 days, 2015-10-07 to 2015-10-31

GHRSST L2P LRG2.16 HW8 SST Dual (Day/Night) Algorithm, daily Distribution Himawari-8, last 24 days, 2015-10-08 to 2015-10-31

GHRSST L2P LRG2.16 HW8 SST Dual (Day/Night) Algorithm, daily Biases Himawari-8, last 24 days, 2015-10-08 to 2015-10-31

Areas for improvement

- Coastal warming is resolved.
- Diurnal warming is seen.

However:

- Cloud identification is problematic.
- The baseline SEVIRI cloud mask (as implemented in GEOCAT) will need further tuning for AHI / Eastern hemisphere.

Areas for improvement

Coming to:

https://podaac.jpl.nasa.gov/GHRSST http://www.ghrsst.org {soon !?}

General SST contact:

Helen Beggs: H.Beggs@bom.gov.au

C.Griffin@bom.gov.au

