

CMEMS SST-TAC: Achievements During the Second Year (2019) and Evolutions Plans in 2020

Andrea Pisano¹, Chongyuan Mao², Simon Good², Jacob Hoeyer³, Emma Saux Picart⁴, Jean Francois Piollé⁵, Cristina Tronconi¹, Rosalia Santoleri¹, Bruno Buongiorno Nardelli¹

Presented by Andrea Pisano (andrea.pisano@cnr.it) on behalf of the SST-TAC

Introduction The Sea Surface Thematic Assembly Centre (SST-TAC) is one of the Copernicus Marine Environment Monitoring Service (CMEMS) elements that provides operational (near-real-time) and reprocessed, also referred to multi-year (MY), SST products for the Global Ocean and the European Seas. SST products are typically provided as merged multi-sensor (L3S) and spatially complete (L4) daily data. The SST-TAC provides continuous evolutions of SST products following 3 main lines:

Main evolutions during 2019/2020:

- (1) Integration of new sensors
- (2) New products/Evolution of processing algorithms
- (3) Upgrade of Multi-Year processing and implementation of Ocean Monitoring Indicators

(1) evolutions linked to the space component; (2) development of new products; (3) Update of MYP products.

Integration of Sentinel-3A/3B SLSTR L2P data from both Sentinel-3A/3B have been successfully integrated in

almost all the near-real-time SST products.

The impact of Sentinel SLSTR on global and regional products varies depending on processing chains

Region	Summer (July – September 2019)						Winter (November 2019 – January 2020)					
	Mean Difference (K)			Standard Deviation (K)			Mean Difference (K)			Standard Deviation (K)		
	OPER	S3V	S3nt	OPER	S3V	S3nt	OPER	S3V	S3nt	OPER	S3V	S3nt
Global Ocean	-0.11	-0.07	0.08	0.36			-0.09	-0.05	0.06	0.31		
North Atlantic	-0.11	-0.04	0.14	0.46	0.47	0.47	-0.07	-0.05	-0.01	0.40	0.40	0.4
Tropical Atlantic	-0.17	-0.10	0.08	0.26	0.24	0.22	-0.11	-0.05	0.09	0.21		0.19
South Atlantic	-0.10	-0.08	0.01	0.43	0.43	0.42	-0.08	-0.04	0.08	0.35	0.35	0.35
North Pacific	-0.09	-0.04	0.11	0.33			-0.09	-0.06	0.02	0.27		0.28
Tropical Pacific	-0.08	-0.04	0.1	0.20	0.20	0.19	-0.08	-0.04	0.1	0.18	0.18	0.18
South Pacific	-0.10	-0.08	0.04	0.26			-0.09	-0.04		0.26		
Indian Ocean	-0.16	-0.11	0.08	0.29	0.29	0.27	-0.08	-0.02	0.12	0.28	0.28	0.28
Southern Ocean	-0.11		0.01	0.41		0.4	-0.10	-0.07	0.05	0.36	0.36	0.36

OPER: operational OSTIA (VIIRS and in situ obs. Used as reference): \$3VIIRS (\$3VI: experiment that uses combined VIIRS L3P and Sentinel-3A/-3B SLSTR as reference: \$3night (\$3nt): experiment that uses

OSTIA, Baltic Sea and European Seas products: only dual view data used, comparable statistics with respect to control run (without SLSTR). Mediterranean and Black Seas products: S3A dual view data used as reference, nadir view bias-corrected → MBE and RMSD improvements

SST-TAC MYPs SST-TAC provides global and regional L4 multi-year products (MYPs). In July 2020, all the SST-TAC MYPs will be reprocessed by using the ESA CCI SST v2.0 dataset together with C3S data. MYPs key strengths: consistent upstream among different products and regular updates through C3S Service

SST_GLO_SST_L4_REP **OBSERVATIONS 010 011** (OSTIA REP. foundation SST. for users who want long-term dataset that is equivalent to the near real time product)

SST GLO SST L4 REP OBSERVATIONS_010_024

(daily average temperature at 20 cm produced by ESA CCI (1) and C3S for climate research users)

SST_ATL_SST_L4_REP OBSERVATIONS_ 010_026 Daily nighttime foundation SST from 1982 to 2018

Atlantic region

Baltic Sea SST_BAL_SST_L4_ REP **OBSERVATIONS** 010 016 Daily foundation SST from 1982 to 2018

OBSERVATIONS 010 022 Daily nighttime foundation SST from 1982 to 2018 Mediterranean Sea: SST MED SST L4 REP **OBSERVATIONS 010 021**

Black Sea:

SST BS SST L4 REP

Daily Nighttime foundation SST from 1982 to 2018

New Products The SST-TAC has provided in 2019 a new regional L4 product over ATL (IFREMER) and a new regional L3S over BAL (DMI). In 2020, the SST-TAC will provide 3 new L4 diurnal MED/BS and BAL SST products.

irnal OI SST product for the Mediterranean Sea and Black Ses

- Combining model and geostationary satellite data to reconstruct hourly optimally interpolated (OI) SST fields
- The approach takes advantage of geostationary satellite observations as the diurnal signal source to produce gap-free (OI) hourly SST fields using model analyses as first-guess The resulting SST anomaly field (satellite-model) is free, or nearly free, of any diurnal cycle,
- thus allowing one to interpolate SST anomalies using satellite data acquired at different times of the day

- Merchant, C.J., Embury, O., Bulgin, C.E. et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci Data 6, 223 (2019). https://doi.org/10.1038/s41597-019-0236-x
 Marullo, S., Santoleri, R., Ciani, D., Le Borgne, P., Péré, S., Pinardi, N., ... & Nardone, G. (2014). Combining model and geostationary satellite data to reconstruct hourly SST field over the Mediterranean Sea. Remote sensing of
- von Schuckmann, K., Le Traon, P. Y., Smith, N., Pascual, A., Djavidnia, S., Gattuso, J. P., ... & Álvarez Fanjul, E. (2019). Copernicus Marine Service Ocean State Report, Issue 3. Journal of Operational Oceanography, 12(sup1), S1-