

111 A 11

00

Evaluation of HRSST drifters using Copernicus SLSTR

Gary Corlett, Anne O'Carroll, Igor Tomazic

Introduction

• Reference data, such as drifting buoys, are essential for satellite SST validation

- Data mainly provided by the NOAA Global Drifter Program
- Coordinated by the JCOMM DBCP
- Estimated uncertainty of drifters was 0.1 K
 - However many studies suggested drifter uncertainty was closer to 0.2 K

GHRSST DBCP Pilot Project

- A number of drifters to be upgraded to a higher specification
 - Position accuracy and reporting to 0.01degrees (HRSST-1)
 - SST accuracy < 0.05K; reporting to 0.01K (HRSST-2)
 - Total standard uncertainty in measured SST to be < 0.05K
- Requirements
 - Hourly measurements
 - Report design depth in calm water to ±5cm
 - Report of geographical location to ±0.5km or better
 - Report of time of SST measurements to ±5 minutes
- Endorsed by GHRSST 2013
- Most drifter data now HRSST-2

Copernicus Sentinel 3 SST

- The Sea and Land Surface Temperature Radiometer (SLSTR) is a dual-view selfcalibrating IR radiometer following the ATSR class of sensors
- SST Retrievals by radiative transfer modelling of the form:

 $a_0 + \sum_{1}^{n} a_n BT_n$

where n is the number of channels

- For SLSTR we use 2 channels during day and 3 during night
 - 3.7 µm not used during day owing to solar contamination
 - We have two views, so we have four SST retrievals in total

SLSTR-A

Operational since 05/07/2017 Reprocessed data from 19/04/2016 to 04/04/2018 available via CODA REP

<u>SLSTR-B</u>

Harmonized to SLSTR-A using SSES Operational since 12/03/2019

Nominal Channel Centre	Primary Application
S7: 3.7 μm	SST Retrieval
S8: 11 μm	SST/LST Retrieval
S 9: 12 μm	SST/LST Retrieval
Four Possible Retrievals:	

Nadir 2-channel N2 Nadir 3-channel N3 Dual 2-channel D2 Dual 3-channel D3

http://eoportal.eumetsat.int/ (only simple registration is needed)

<u>WCT</u>

- This product provides sea surface temperature for all offered retrieval algorithms.
- Only available to Cal/Val users via ODA (FTP) and Data Centre (Archive)
- <u> WST</u>
 - This product provides the best SST at each SLSTR location in GHRSST L2P format.
 - Available to all via ODA (FTP), EUMETCAST (DVP), CODA(REP) (http) and Data Centre (Archive)

TRUSTED

- EUMETSAT Copernicus funded project to deploy 150 new drifters
 Fiducial Reference Measurement (FRM) activity
- New type of drifter -> SVP-BRST
- Each drifter has two SST sensors
 - One conventional sampling (1 sample every 5 min)
 - One high-frequency sampling (300 samples every 5 min)

- Available via the GTS (low frequency data only)
 - Additional offline metadata and data available and provided with SLSTR MDB

• Further details available at:

http://www.eumetsat.int/website/home/Data/ScienceActivities/ScienceStudies/TowardsfiducialReferencemeasUrementsofSeaS urfaceTemperaturebyEuropeanDriftersTRUSTED/index.html

https://scienceblog.eumetsat.int/2019/11/sailors-drop-off-ocean-monitoring-buoys-during-trans-atlantic-race/

Aims of this work and methodology

- The aims of this work are to:
 - 1. Analyse SLSTR/drifter match-ups and identify issues that impact the validation results
 - 2. Use TRUSTED data to 'self-QC'
 - 3. Apply TRUSTED methods to all HRSST drifters
 - 4. To assess the overall accuracy of HRSST drifters
- Dataset used
 - SLSTR-A MDB (01/08/2016 to 12/05/2020)
 - 6106 unique drifters giving match-ups (drifter QL = 4 and 5)
- Initial approach is to investigate
 - Large sat/drifter SST differences
 - Variability of drifter SSTs

SLSTR-A D3 versus drifter time series

6

Examples 1

Upper plot: Time series of in situ SST at match-up location in red; blue asterisk indicates match-up rejected by satellite QC; green asterisk is good match-up (QL=5) Lower plot: Map of satellite / drifter match-up locations

Examples 2

Upper plot: Time series of in situ SST at match-up location in red; blue asterisk indicates match-up rejected by satellite QC; green asterisk is good match-up (QL=5) Lower plot: Map of satellite / drifter match-up locations

Summary

- Reference data from drifting buoys essential for satellite SST validation
 A few issues limit the usefulness of current drifter data
- The satellite and in situ communities are coordinating their efforts to better understand these limitations through GHRSST and the DBCP
 - Most drifters are now HRSST-2 standard
- A new Copernicus funded FRM project, TRUSTED, is providing new data to facilitate self-QC of drifter data
- Initial results suggest the overall quality of the drifting buoy array has improved in recent years

- High-resolution sea surface temperature (HRSST) drifting buoys for satellite SST – review workshop
- To be held at Meteo-France, Saint Mandé, Paris, France, 2-4 March 2021
 - Video link available
- TRUSTED metadata and high frequency SSTs are available with the SLSTR MDB
 - See poster of Igor Tomazic (013)

