

#### Validation of SST and SSS Gradients Using the Saildrone Baja and Gulf Stream Deployments 1. Baja 2. Gulf Stream J. Vazquez-Cuervo JPL/Caltech Marouan Bouali University of Sao Paulo Jose Gomez-Valdes CICESE **GHRSST XXI Meeting**



© 2020 All Rights Reserved

## Outline

- New co-location strategy developed for the derivation and comparison of SST and SSS gradients.
- Derivation of comparison statistics for two Saildrone Deployments
  - California/Baja 2018
  - Gulf Stream 2019
- Comparisons with SST gradients derived from GHRSST Level 4 data sets.
- Comparisons done with RSS SMAP Version 4.0 and JPL CAP Version 4.2



## **Co-location Methodology**

- For every grid point of a Level 4 SST/SSS product, all Saildrone measurements inside that grid point are averaged
- The "average acquisition time" of Saildrone measurements is computed for each grid point and then
- Sorted to generate a collocated time series of Level 4 SST/SSS/Saildrone
- Gradients are then derived as differences between successive points of the time series and accounting for the distance in space between points





## SST/SSS Gradients Baja Deployment











0.00 0.02 0.04 0.06 0.08 0.10





#### RSS40km SSS





| -       | -            | Bias   | RMSE  | Correlation |
|---------|--------------|--------|-------|-------------|
| CMC     | SST          | -0.074 | 0.417 | 0.975       |
|         | ∇SST         | -0.009 | 0.022 | 0.315       |
| K10     | SST          | 0.137  | 0.475 | 0.969       |
|         | <b>∇</b> SST | -0.007 | 0.022 | 0.293       |
| REMSS   | SST          | 0.075  | 0.401 | 0.977       |
|         | ∇SST         | -0.007 | 0.023 | 0.243       |
| OSTIA   | SST          | 0.022  | 0.365 | 0.980       |
|         | ∇SST         | -0.008 | 0.022 | 0.306       |
| DMI     | SST          | 0.040  | 0.489 | 0.966       |
|         | ∇SST         | -0.008 | 0.023 | 0.255       |
| MUR     | SST          | 0.285  | 0.500 | 0.975       |
|         | ∇SST         | -0.003 | 0.021 | 0.395       |
| JPLSMAP | SSS          | 0.141  | 0.414 | 0.429       |
|         | ∇SSS         | 0.002  | 0.005 | 0.128       |
| RSS v4  | SSS          | -0.170 | 0.336 | 0.464       |
|         | ∇SSS         | 0.002  | 0.004 | 0.072       |



### Taylor Diagram SST Gradients





#### JPLSMAP



# Gulf Stream















| -       | -    | Bias   | RMSE  | Correlation |
|---------|------|--------|-------|-------------|
| CMC     | SST  | -0.350 | 1.310 | 0.962       |
|         | ∇SST | -0.012 | 0.054 | 0.374       |
| K10     | SST  | -0.688 | 1.928 | 0.917       |
|         | ∇SST | -0.009 | 0.062 | 0.072       |
| REMSS   | SST  | -0.085 | 0.962 | 0.977       |
|         | ∇SST | -0.016 | 0.055 | 0.342       |
| OSTIA   | SST  | -0.209 | 1.185 | 0.968       |
|         | ∇SST | -0.012 | 0.053 | 0.371       |
| DMI     | SST  | 0.002  | 1.401 | 0.951       |
|         | VSST | -0.017 | 0.058 | 0.210       |
| MUR     | SST  | -0.051 | 1.057 | 0.975       |
|         | ∇SST | -0.010 | 0.054 | 0.321       |
| JPLSMAP | SSS  | -0.325 | 0.437 | 0.591       |
|         | VSSS | 0.001  | 0.006 | 0.084       |
| RSS v4  | SSS  | -0.151 | 0.457 | 0.932       |
|         | VSSS | 0.001  | 0.007 | 0.140       |

$$\left( \left( \right) \right)$$

#### **Cross-Correlations**



 $\left( \left( \right) \right)$ 

## Conclusions

- Correlations between the GHRSST Level 4 SST products and Saildrone were above 0.90, indicative that, overall, the GHRSST L4 products are doing a good job at reproducing the SST values in the Baja/California coastal upwelling region and the Gulf Stream.
- However, correlations of SST gradients drop significantly with larger differences between the products. For the California/Baja deployment the MUR derived SST gradients showed the best correlation.
- For the Gulf Stream deployment SST showed clear relationships to major frontal features associated with the Gulf Stream. Correlations range from 0.3 to 0.4.
- A primary conclusion is that comparisons of SST gradients are critical for applications to coastal regimes, where mesoscale-submesoscale dominate. Statistical relationships that apply to correlations between SST and in-situ data do not necessarily apply to gradients. The Saildrone deployments provide an excellent platform for validating and the application of SST gradients.

### Animation SST Gradients Baja

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

#### Animations Gulf Stream

MUR SST Date: 2018-01-30 00:00:00

![](_page_17_Figure_2.jpeg)

IOUSP/JPL/CICESE

CMC SST Date: 2018-01-30 00:00:00

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)