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Summary and Conclusions

 The accuracy of the OESST is limited by that of the prior pdf of SST and seemingly cannot overcome biases of 0.1 K or more. This 
means our prior knowledge of SST has to already be in a range of 0.1 K or better. 
 The unmodified OESST only improves on the prior ERA5 SST  by about 30% in bias reduction with respect to buoy measurements.
 Simple diurnal correction improves the performance of OE significantly for the daytime data but even then the NLSST performs 
better.
 The selection of the prior SST is crucial for performance of OE, not so for NLSST.
For night-time data, OE outperforms NLSST in all cases. Due to the lack of input from the visible channels the night-time data are in 
general more susceptible to being contaminated by clouds, and that would be even more so for lesser quality data so perhaps it is not 
surprising that NLSST performs worse for this category.
 One might ask if we already have accurate and unbiased prior, as is there necessary for the OE is there a point of performing the 
retrieval at all? 

 

 

    

             

 

The OE Approach

Satellite Dataset
We apply the OE retrieval to a subset of MODIS Collection 6 (R2014) Match-Up Data Base (MUDB), for 2015 and 2016 from the 
North Atlantic Ocean and the Mediterranean Sea (Figure 2).  The MUDB includes the 11 and 12 μm radiance measurements (channels m radiance measurements (channels 
31 and 32). The error specification is 0.05K, corresponding to a radiance of ~0.007 W/m2-μm radiance measurements (channels m-sr.  Each MUDB record includes 
assessment of the confidence in the retrieved value expressed as the quality flag (qf). The bests match-ups have qf=0 and the slightly 
worse qf=1. Quality flags > 1 typically indicate contaminated pixels and are not used here.

Prior knowledge
The MODIS NLSST (Kilpatrick et al, 2015) is based on the radiance measured in channels 31 and 32 being sensitive to the SST, and 
the channel radiance difference being sensitive to the Total Column Water Vapor (TCWV). Given two measurements, at best two 
components of the state vector can be retrieved. so we use a reduced state vector: x = [SST, TCWV].  
Prior knowledge is the SST and TCWV fields is taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
ERA5 dataset.  We assume that the prior pdf of x is Gaussian with mean [SST0 ,TCWV0] given by ERA5, and some prior variance that 
we have to specify. The ERA5 SST corresponds to a subsurface temperature measured at a buoy level. This temperature differs from 
the skin SST obtained by satellite measurements and the average offset has been estimated at -0.17 K (Donlon et al., 2002), so we 
subtract this from ERA5 SST to estimate skin SST. For the forward radiative transfer modelling we use the ERA5 atmospheric profiles 
of temperature, water vapor, and ozone. The spatial resolution is 0.4o x 0.4o and the temporal resolution for 6 hours for the atmospheric 
profiles and 24 hours for the SST.

Forward model
We use the Radiative Transfer for TOVS (RTTOV) v12.1 (Hocking et al., 2018). The ERA5 data are interpolated to the time and 
position of the match-up data point. Using RTTOV we simulate MODIS channel 31 and 32 radiances as well as the Jacobian matrix, K. 
The forward model is only an approximation and thus is an additional source of error. 

Prior covariance  Sa and Measurement error covariance Sε
The covariance matrices are:
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i
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Abstract

The Optimal Estimation (OE) approach based on Bayesian inversion gained popularity 
in the satellite sea surface temperature (SST) retrieval community with the promise of 
improving accuracy over the traditional non-linear SST (NLSST) retrieval algorithms, 
especially overcoming their problem with regional biases.  OE, however, has its own 
problems typically related to insufficient knowledge of prior state, too few degrees of 
freedom, too crude forward model or insufficient measurement accuracy. 
We applied the OE approach to SST retrievals using in two IR MODIS channels at 11 
and 12 μm radiance measurements (channels m and found that the OE approach is not always better than the NLSST 
retrieval. 

 

Bayesian inversion concepts 

Conceptually, the Bayesian approach can be summarized as follows:
1) we have some knowledge of the state before the measurement is made and the prior knowledge is expressed by a prior pdf 
of the state variables.
2) we have a forward model that maps the state variable into the measurement space.
3) we know the pdf of the measurement errors.
4) we can calculate posterior pdf  by augmenting the prior pdf of the state vector with the measurement. 

If the forward model is F, the prior state is x
a
 and the measurements is y then for Gaussian pdfs the expected value of posterior 

pdf of state variables is given by:
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Results

The Table shows in the 1st row the state of prior knowledge as the difference between the prior ERA5 SST and in situ measurements, ΔSST,SST, for 
daytime and night-time measurements, for quality 0 and 1 pixels; numbers in brackets are robust values. The 2nd row shows results of OE retrieval, 
ΔSST,SSTOE, row 3 the NLSST retrieval, ΔSST,SSTNL and row 4 shows results of OE retrieval with a modified prior SST. Two main results are:

1) For the night-time match-ups, OE delivers better results than NLSST, particularly for the lower quality data. 

2) NLSST outperforms OE in the daytime. 

The poorer performance of the OE approach for the daytime data indicates that the OE process is not strong enough to overcome the -0.26K average 
bias of the prior SST. We thought the bias might be related to the fact that the ERA5 SST field does not contain diurnal component of SST variation. 
The amplitude of diurnal variation can be quite large, sometimes exceeding 1K. We introduced a simple method of estimating the diurnal bias in the 
ERA5 data as a linear function of the cosine of solar zenith angle, msolz, and attempt the OE retrieval with the improved prior SST.  Figure 1 shows 
as a contour plots of ΔSST SST vs msolz before (a) and after the diurnal bias correction (b) for qf=0 daytime data. The bias correction for qf=0 data is 
calculated with qf=1 data as the diurnal bias should be independent of the quality of the satellite matchup and to keep the correction independent of 
the data field being corrected. 

Day qf=0 Day qf=1 Night qf=0 Night qf=1 

 Mean   Std.  Mean   Std.  Mean   Std.  Mean   Std.

ΔSST,SST -0.26
(-0.24)

0.73
(0.56)

-0.24
(-0.23)

0.67
(0.51)

-0.04
(-0.03)

0.71
(0.49)

-0.04
(-0.04)

0.74
(0.52)

ΔSST,SSTOE 
-0.18 
(-0.15)

 0.68
(0.45)

-0.19
(-0.18)

0.63
(0.58)

0.01
(0.03)

0.66
(0.47)

-0.06
(-0.04)

0.70
(0.51)

ΔSST,SSTNL
0.03

(0.03)
0.63

(0.58)
-0.08

(-0.04)
0.76

(0.74)
-0.10

(-0.08)
0.53

(0.53)
-0.32

(-0.29)
0.75

(0.79)

ΔSST,SSTOE*
0.05

(0.08)
0.67

(0.53)
0.07

(0.09)
0.63

(0.50)
0.04

(0.06)
0.66

(0.47)
-0.03

(-0.01)
0.70

(0.51)

Figure 2. Maps of the retrieval domain: a) prior knowledge minus buoy temperature corrected by the skin 
effect SST

b
; b) NLSST- SST

b
; c) unmodified OESST SST

b
; and d) the difference between the original OESST 

and the modified OESST*  with the SST prior corrected for diurnal signals. 
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