

#### **ESA Climate Change Initiative Phase-II**

#### Sea Surface Temperature (SST)

www.esa-sst-cci.org

## Preparing for retrieval of SST from Copernicus Imaging Microwave Radiometer (CIMR)

Jacob L. Høyer, Pia Nielsen-Englyst, Emy Alerskans & Leif Toudal Pedersen











Norwegian Meteorological





# Outline

- Motivation
- CIMR
- Test setup
  - Multi-sensor matchup data base (MMD)
  - Retrieval algorithms (OE and Statistical)
- Assessment strategy
- Performance of CIMR and other channel combinations
- Conclusions and way forward

Retrieval of SST from CIMR observations

















# **Motivation**

- PMW SST retrievals are valuable supplement to IR SSTs due to the capability to see through clouds and no response to aerosols
- Several different PMW missions exists with different channel combinations
- A new PMW satellite (CIMR) is candidate for the Copernicus expansion mission
- CIMR channel configuration different from existing missions
- Important to assess for the different channel selections
  - Impact on retrieved SST compared to existing missions.
  - Feasibility of different type of retrievals

Retrieval of SST from CIMR observations



















# **CIMR observation characteristics**

- Two primary parameters
- Sea Ice Concentration (≤5 km, 5%)
- SST (15 km, <0.3 K)</li>
- Many secondary:
- Sea Surface Salinity
- Extreme Wind
- Soil Moisture
- Thin Sea Ice Thickness
- Terrestrial Snow extent



Polar coverage of CIMR (Arctic)





| Channels (GHz, Full Stokes): | 1.4      | 6.9  | 10.65 | 18.7 | 36.5 |  |
|------------------------------|----------|------|-------|------|------|--|
| Resolution (km):             | ≤60      | ≤15  | ≤15   | ≤5.5 | ≤5   |  |
| ΝΕΔΤ (Κ @150Κ):              | ≤0.3     | ≤0.2 | ≤0.3  | ≤0.4 | ≤0.7 |  |
| Swath                        | >1900 km |      |       |      |      |  |

Retrieval of SST from CIMR observations











Meteorological

Institute





# Multisensor Matchup Dataset (MMD6C)

#### AMSR-E L2A TBs from RSS (NSIDC), version 7

- Resampled to resolution; 10 km, all channels
- Orbit files, ascending and descending

#### Every matchup includes:

- 21x21 extract of AMSR-E TBs + aux info
- 5x5 extract of NWP variables
- 60 vertical layers for NWP
- In situ SST history

University of

5x5 sea ice

Netcdf format

Cesa





GHRSST - 20. Boulder

BROCKMANN

CONSULT

Retrieval of SST from CIMR observations

of matchup:

9

# **Optimal Estimation (OE) algorithm**



### **OE Theoretical retrieval error**

- The simulated retrieval error, S, as a function of SST for different a) WSs, b) TCWVs and c) TCLWs.
  - $\mathbf{S} = (\mathbf{S}_a^{-1} + \mathbf{K}_i^T \mathbf{S}_{\varepsilon}^{-1} \mathbf{K}_i)^{-1}$

esa

Several information content studies (Pearson et al., 2018, Kilic et al., 2018)





# **Regression (RE) algorithm**

- Alerskans et al. (2020)
- Usual way of retrieving SST from PMW (Wentz and Meissner, 2007, Han et al., 2012)
- RSS uses a two step algorithm, coefficients derived for SST and wind intervals.
- We use brightness temperature  $(T_B)$  for all channels, incidence angle  $(\theta_{EIA})$ , wind speed (WS) and the relative angle between satellite azimuth angle and wind direction ( $\varphi_{REL}$ )

$$SST_r = a_0 + \sum_{i=1}^{12} a_i t_i + b_i t_i^2 + c\theta + dWS + \sum_{j=1}^{2} e_j \cos j\varphi_{REL} + f_j \sin j\varphi_{REL}$$

• Where 
$$t_i = T_{Bi} - 150$$
, for all channels except the 23.6 GHz channels  
 $t_i = -\ln(290 - T_{Bi})$ , for the two 23.6 GHz channels  
 $\theta = \theta_{FIA} - 55$ 

- Algorithm regressed towards drifting buoy observations
- Different from paper: Global coefficients

Retrieval of SST from CIMR observations















### Assessment strategy

- Test performance of the OE and RE algorithms on all channel combinations (>2) channels)
- Always include 6 GHz
- Test all combination types
  - Independent drifting buoys •
    - Global results \_
    - Range of environmental conditions
  - Use sensitivity to assess relative importance of channels for retrievals ٠
- Focus on four channel scenarios:
  - 6 10 18; 6 10 23; CIMR-like; AMSR-like •
- Assess 4 scenario performance:
  - Spatial differences
  - Seasonal variations
  - **Regional aspects**

Retrieval of SST from CIMR observations























## Performance of different channel selections

- Robust standard deviations (rstd) of retrieved SST vs drifter SST for different channel selections
- Filters are based on TB RMSE from the AMSR-E channel configuration
- Ranking order is based on the RE, TB RMSE < 0.25 K</p>

Cesa



Page

### Performance in different observing conditions

- OE is more sensitive to the different observing conditions
- RE is able to correct for the decreased SST sensitivity in cold waters
- OE and RE agree that more channels improve SST retrievals for the full range of observing conditions

University of

esa



# Impact from adding different frequencies

- Table shows:
  - Improvement in retrieved SST performance for OE and RE
- 6 GHz most important
- 10 and 18 equally important.
- Withholding the 23 and 36 GHz observations has the least impact on SST performance



**Channel Selection** 

|        | OE SST | RE SST |
|--------|--------|--------|
| 6 GHz  | 0.2402 | 0.0907 |
| 10 GHz | 0.0876 | 0.0148 |
| 18 GHz | 0.0811 | 0.0117 |
| 23 GHz | 0.0309 | 0.0089 |
| 36 GHz | 0.0289 | 0.0114 |

Retrieval of SST from CIMR observations















## **Performance of the AMSR-E configuration**

- Evaluate 6,10,18; 6,10,23; CIMR-Like
- All channel configuration
- OE shows larger latitudinal variation

University of

RF more stable 



Retrieval of SST from CIMR observations







**Oceanography Centre** ATURAL ENVIRONMENT RESEARCH C







## **Comparisons with the AMSR-E config.**



#### Retrieval of SST from CIMR observations





University of **Reading** 











Page 6

#### Seasonal cycle in different regions





Retrieval of SST from CIMR observations

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

Page 10

# **Overall performance in different regions**

- Using 6, 10, 18 GHz is better than the 6, 10, 23 GHz configuration for SST retrievals
- CIMR and AMSR-E show very similar performance

|                         | RE algorithm |           |      | OE algorithm |           |           |      |        |           |
|-------------------------|--------------|-----------|------|--------------|-----------|-----------|------|--------|-----------|
| Region                  | 6, 10, 18    | 6, 10, 23 | CIMR | AMSR-E       | 6, 10, 18 | 6, 10, 23 | CIMR | AMSR-E | Ν         |
| Arctic                  | 0.70         | 0.82      | 0.69 | 0.67         | 0.92      | 0.96      | 0.90 | 0.89   | 109,493   |
| Subpolar North Atlantic | 0.67         | 0.75      | 0.68 | 0.66         | 0.82      | 0.85      | 0.82 | 0.82   | 43,160    |
| North Atlantic          | 0.62         | 0.68      | 0.63 | 0.62         | 0.57      | 0.60      | 0.59 | 0.59   | 110,870   |
| North Pacific           | 0.64         | 0.71      | 0.65 | 0.63         | 0.58      | 0.62      | 0.60 | 0.60   | 163,072   |
| Equatorial Region       | 0.53         | 0.57      | 0.55 | 0.55         | 0.44      | 0.44      | 0.48 | 0.47   | 188,331   |
| South Atlantic          | 0.61         | 0.69      | 0.62 | 0.61         | 0.60      | 0.63      | 0.61 | 0.61   | 76,185    |
| South Pacific           | 0.58         | 0.65      | 0.58 | 0.57         | 0.53      | 0.56      | 0.55 | 0.54   | 116,675   |
| South Indian Ocean      | 0.63         | 0.70      | 0.63 | 0.61         | 0.63      | 0.65      | 0.65 | 0.65   | 83,632    |
| Southern Ocean          | 0.68         | 0.79      | 0.67 | 0.65         | 0.83      | 0.87      | 0.82 | 0.83   | 174,069   |
| All regions             | 0.62         | 0.70      | 0.63 | 0.62         | 0.63      | 0.66      | 0.66 | 0.66   | 1,065,487 |

Retrieval of SST from CIMR observations

GHRSST - 20, Boulder

BROCKMANN

CONSULT

Norwegian

Institute

Aet Office

Meteorological

![](_page_15_Picture_6.jpeg)

University of

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

# Conclusion

- Retrieval assessment against in situ observations give new insights
- Demonstrated similarities with theoretical studies, but important differences due to forward model
- Important to use different types of retrievals for these studies
- More channels give better performance
- 6, 10, 18 GHz better than 6, 10, 23 GHz combination
- Optimal choice with CIMR channels
- CIMR performance very close to all-channel AMSR-E
  - In both types of retrievals
  - For range of environmental conditions
  - Seasonal and regional performance

![](_page_16_Picture_11.jpeg)

National

Oceanography Centre

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_13.jpeg)

![](_page_16_Picture_14.jpeg)

![](_page_16_Picture_15.jpeg)

![](_page_16_Picture_16.jpeg)

![](_page_16_Picture_17.jpeg)