

ESASST CCI project - phase II Work funded by the ESA

Impact of Passive Microwave SST on level 4 analysis

Mark Worsfold¹, Simon Good¹, Jacob Høyer², Emy Alerskans²

Introduction

The ESA Sea Surface Temperature (SST) Climate Change Initiative (CCI) phase Il project has recently generated a new climate data record (CDR) of SSTs based on infrared (IR) satellite data.

SSTs derived from passive microwave (PMW) data have the potential to overcome the shortcomings of IR data (poor performance where there is cloud and aerosols).

This project aims to determine the impact of using PMW SST data from the AMSR-E (200206 – 201109) and AMSR2 (201207 – 201612) instruments in

Comparison between level 4 analyses

The IR-only and IR+PMW data sets were processed using the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system to produce daily, global L4 analyses for the study period. The comparison shows that:

- The analysis relaxed to climatology less often in the tropics (more observations available).
- The global average timeseries shows that using

PMW SST data results in a warmer sea (Fig. 1).

addition to the IR data used in the phase II CDR.

analyses. Tables 1 and 2 show the results from the time periods that the AMSR-E and AMSR2 instruments were active.

Where the statistics are better by at least 0.02 between the types of analysis, the better of the two is highlighted in bold.

The results show that using PMW SST data improves the skill of the OSTIA analysis in all areas except the Mediterranean Sea.

Conclusion

Using PMW SST data results in:

- Increased number of observations globally, but most especially in areas poorly observed by IR data, such as tropical regions.
- Warmer sea surface temperatures distributed across the globe.
- Comparison to independent Argo data shows that PMW derived SSTs reduces the mean difference and standard deviation values.
- While the uncertainty was reduced, the spatial resolution remained the same.

AMSR-E	IR – only analyses		IR and PMW analyses		
Region	Mean difference (K)	Standard deviation of differences (K)	Mean difference (K)	Standard deviation of differences (K)	Number of matchups
Globe	-0.065	0.445	-0.040	0.415	473987
Arctic	-0.188	0.532	-0.149	0.488	2754
Mediterranean Sea	0.093	0.762	0.101	0.761	2941
North Atlantic	-0.056	0.549	-0.027	0.517	63605
Tropical Atlantic	-0.110	0.359	-0.053	0.324	24402
South Atlantic	-0.056	0.432	-0.038	0.406	39860
North Pacific	-0.059	0.478	-0.022	0.444	166408
Tropical Pacific	-0.062	0.278	-0.042	0.260	102518
South Pacific	-0.064	0.342	-0.052	0.325	113292
Indian Ocean	-0.084	0.392	-0.060	0.352	84471
Southern Ocean	-0.087	0.446	-0.066	0.423	93927

Table 1: Results for the AMSR-E period (200206 – 201109)

AMSR2	IR – only analyses		IR and PMW analyses		
Region	Mean difference (K)	Standard deviation of differences (K)	Mean difference (K)	Standard deviation of differences (K)	Number of matchups
Globe	0.053	0.452	0.026	0.395	337634
Arctic	0.065	0.552	-0.048	0.526	3040
Mediterranean Sea	-0.036	0.440	-0.042	0.433	6831
North Atlantic	0.069	0.477	0.038	0.414	59418
Tropical Atlantic	0.186	0.386	0.084	0.316	25910
South Atlantic	0.072	0.540	0.033	0.468	25840
North Pacific	0.036	0.468	0.002	0.410	116885
Tropical Pacific	0.043	0.310	0.033	0.272	93485
South Pacific	0.044	0.368	0.035	0.326	86940
Indian Ocean	0.097	0.417	0.065	0.352	47506
Southern Ocean	0.070	0.525	0.037	0.459	63027

The analysis shows that using PMW derived SSTs gives significant value to the analyses. It is therefore recommended that more PMW derived SST datasets are made available and utilised for future analyses.

The L4 analysis files are available for download. Please contact us at the email addresses below.

Table 2: Results for the AMSR2 period (201207 – 201612)

¹⁾ Met Office FitzRoy Road, Exeter, Devon, EX1 3PB United Kingdom Tel: +44 1392 885680 Fax: +44 1392 885681 Email: (main contact) mark.worsfold@metoffice.gov.uk, simon.good@metoffice.gov.uk ²⁾ **DMI**, Lyngbyvej 100, 2100, Copenhagen, Denmark. Email: jlh@dmi.dk, ea@dmi.dk

© Crown copyright | Met Office and the Met Office logo are registered trademarks