A comparative study of ocean thermal gradients from GHRSSST Level 4 SST products

Marouan Bouali, Jorge Vazquez-Cuervo, Paulo Polito and Olga Sato

20th GHRSSST International Science Team Meeting
ESA/ESRIN, Frascati, Italy, 3-7 June 2019
Outline

- Importance of fronts
- Statistics vs Geometry
- SST gradients from Level 4 products
 - Feature resolution
 - Temporal variability
- Conclusion
Fronts in oceanography

Marine ecosystem boundaries

Ocean 2D / 3D dynamics

Fisheries

Ocean-Atmosphere interaction

https://oceancolor.gsfc.nasa.gov/gallery/
Product selection for SST gradients
“What's the “best” Level 4 product for SST gradients?”

Temporal Coverage

- Daily
- >10 Years

Fronts in synoptic maps
 - Fishing spots
 - Submarine acoustic communication

Seasonal variability
 - Coastal Upwelling
 - Ocean models

Long term change
 - Impact of climate on ocean frontal activity
“What's the “best” Level 4 product for SST gradients?”

Can we use *in situ* measurements to evaluate the quality of a dataset with respect to SST gradients?

Long term change
Impact of climate on ocean frontal activity
Statistics vs Geometry

Bias = 0.16°C
Stdev = 0.5°C
Statistics vs Geometry

Matchup

In situ

Satellite

Bias = 0.16°C
Stdev = 0.5°C
Statistics vs Geometry

Matchup

In situ
17.50 17.50 17.50
17.50 17.50 17.50
17.50 17.50 17.50

Satellite
17 17 17
17 17 17
17 17 17

Bias = 0.16°C
Stdev = 0.5°C
Statistics vs Geometry

In situ

<table>
<thead>
<tr>
<th>17.50</th>
<th>17.50</th>
<th>17.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.50</td>
<td>17.50</td>
<td>17.50</td>
</tr>
<tr>
<td>17.50</td>
<td>17.50</td>
<td>17.50</td>
</tr>
</tbody>
</table>

Satellite

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matchup

Same statistics
Different geometries...

Same statistics

Different geometries...
How consistent are SST gradients from GHRsst Level 4 datasets?
Datasets

6 GHRSSST Level 4 SST (2016-2018)

- Canadian Meteorological Center **CMC**
- Naval Oceanographic Office **K10**
- Remote Sensing Systems **REMSS_MW_IR**
- UK MetOffice **OSTIA**
- Danish Meteorological Institute **DMI**
- NASA/JPL Multiscale Ultrahigh Resolution **MUR**

All data downloaded from PODAAC and reprojected to a 0.1°Lat/Lon grid
Datasets

Comparison over 5 regions

- Brazil-Malvinas confluence region
- California Current System
- Agulhas current and retroflection zone
- Gulf Stream
- Peruvian Upwelling System
Datasets

<table>
<thead>
<tr>
<th>In situ</th>
<th>MODIS</th>
<th>AVHRR</th>
<th>VIIRS</th>
<th>ABI</th>
<th>GOES</th>
<th>SEVIRI</th>
<th>AMSR-E</th>
<th>AMSRE-2</th>
<th>TMI</th>
<th>GMI</th>
<th>WINDSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>K10</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>REMSS</td>
<td>✓</td>
</tr>
<tr>
<td>OSTIA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DMI</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>MUR</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Feature resolution

Aqua MODIS
Dec 31 2018, Brazil-Malvinas (Level 2P, 1 km)
Feature resolution

Level 3U (0.1° grid)

Level 4 (0.1° grid)
Feature resolution

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bias</th>
<th>Stdv</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC</td>
<td>0.32°</td>
<td>0.59°</td>
<td>0.46</td>
</tr>
<tr>
<td>K10</td>
<td>0.28°</td>
<td>0.37°</td>
<td>0.22</td>
</tr>
<tr>
<td>REMSS</td>
<td>0.00°</td>
<td>0.41°</td>
<td>0.17</td>
</tr>
<tr>
<td>OSTIA</td>
<td>0.34°</td>
<td>0.48°</td>
<td>0.35</td>
</tr>
<tr>
<td>DMI</td>
<td>0.29°</td>
<td>0.55°</td>
<td>0.39</td>
</tr>
<tr>
<td>MUR</td>
<td>0.65°</td>
<td>0.23°</td>
<td>0.47</td>
</tr>
</tbody>
</table>

\[
\text{Mean Squared Error} = \frac{(err_1^2 + err_2^2 + \ldots)^2}{N}
\]
Feature resolution

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bias</th>
<th>Stdv</th>
<th>MSE</th>
<th>SSIM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC</td>
<td>0.32°</td>
<td>0.59°</td>
<td>0.46</td>
<td>0.59</td>
</tr>
<tr>
<td>K10</td>
<td>0.28°</td>
<td>0.37°</td>
<td>0.22</td>
<td>0.79</td>
</tr>
<tr>
<td>REMSS</td>
<td>0.00°</td>
<td>0.41°</td>
<td>0.17</td>
<td>0.76</td>
</tr>
<tr>
<td>OSTIA</td>
<td>0.34°</td>
<td>0.48°</td>
<td>0.35</td>
<td>0.66</td>
</tr>
<tr>
<td>DMI</td>
<td>0.29°</td>
<td>0.55°</td>
<td>0.39</td>
<td>0.72</td>
</tr>
<tr>
<td>MUR</td>
<td>0.65°</td>
<td>0.23°</td>
<td>0.47</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Structural similarity (SSIM) index

Citations May 2019 > 21400
Interannual variability: SST
Interannual variability: $|\nabla SST|$
Histogram of $|\nabla \text{SST}|$

Histogram of SST gradient magnitudes from Level 4 (Daily, Global)
Annual Cycle: $|\nabla \text{SST}|$
Peruvian Upwelling System (2018)
Annual Maps: | ▽SST |

Peruvian Upwelling System (2018)
Annual Maps: \(\nabla \text{SST}\)

Brazil-Malvinas (2018)

CMC K10 REMSS

OSTIA DMI MUR

\[\text{m}^\circ\text{C/km}\]
Annual Maps: \[\nabla\text{SST}\n\]

Brazil-Malvinas (2018)

CMC
Conclusion

- The magnitude of SST gradients from Level 4 products shows major differences in space and time despite consistency of SST.
- Differences originate from the SST analysis AND the Level 2 data ingested.
- Statistical metrics (Bias, Stdv, MSE) do not quantify the “geometrical quality” of SST fields (i.e., Statistical validation ≠ Geometrical validation).
- Validation of SST gradients requires new methods and metrics.
Conclusion

Differences in SST gradients

Level 4
SST analysis method

Level 2/3U

- Stripe noise
- Gaussian noise
- SST retrieval algorithm
- Undetected clouds
- Misclassified fronts
- Merging artifacts

...
Case study
SST gradients from Level 2 MODIS
California Current System
Case study
SST gradients from Level 2 MODIS
California Current System

Increasing trend of SST gradients on Terra MODIS due to continuous degradation of detectors in channels used for SST
Thank you! Questions?