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Motivation
The Problem

@ A microwave sensor, AMSR-E, carried on the Aqua spacecraft sampled the global
ocean twice daily from 2002 through 2011.

@ Sea surface temperature (SST) is estimated from the AMSR-E measurements.

@ The putative SST footprint was 56 x 56 km? sampled every 10 km; i.e, oversampled

Our objective was to deconvolve the AMSR-E field to obtain a true 10x10 km resolution SST field

4/40 14/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

5/40 15/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

5/40 16/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.
@ So we used MODIS to seed the deconvolution

5/40 17/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution
o We selected a region with a large fraction of clear MODIS pixels

5/40 18/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution
o We selected a region with a large fraction of clear MODIS pixels
o Averaged the pixels to the 10 x 10 km AMSR-E grid.

5/40 19/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution
o We selected a region with a large fraction of clear MODIS pixels
o Averaged the pixels to the 10 x 10 km AMSR-E grid.
@ And inverted.

5/40 20/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

5/40 21/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

@ We quickly determined there were two problems:

5/40 29/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

@ We quickly determined there were two problems:
@ The solution was very sensitive to noise.

5/40 22/107



Motivation
An Initial Approach

@ A straight deconvolution requires some seed values.

@ We have coincident 1 x 1km? MODIS SSTs in cloud-free areas.

@ So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

@ We quickly determined there were two problems:
@ The solution was very sensitive to noise.
@ The putative AMSR-E footprint of 56 x 56 km was not correct.

5/40 24/107



Motivation
An Initial Approach

A straight deconvolution requires some seed values.

We have coincident 1 x 1 km? MODIS SSTs in cloud-free areas.

So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

We quickly determined there were two problems:
@ The solution was very sensitive to noise.
@ The putative AMSR-E footprint of 56 x 56 km was not correct.

@ It was clear that we needed to:

5/40 25/107



Motivation
An Initial Approach

A straight deconvolution requires some seed values.

We have coincident 1 x 1 km? MODIS SSTs in cloud-free areas.

So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

We quickly determined there were two problems:
@ The solution was very sensitive to noise.
@ The putative AMSR-E footprint of 56 x 56 km was not correct.

@ It was clear that we needed to:
o Determine the AMSR-E footprint

5/40 26/107



Motivation
An Initial Approach

A straight deconvolution requires some seed values.

We have coincident 1 x 1 km? MODIS SSTs in cloud-free areas.

So we used MODIS to seed the deconvolution

We selected a region with a large fraction of clear MODIS pixels
Averaged the pixels to the 10 x 10 km AMSR-E grid.

And inverted.

It didn’t work so well! The resulting field was dominated by noise.

We quickly determined there were two problems:
@ The solution was very sensitive to noise.
@ The putative AMSR-E footprint of 56 x 56 km was not correct.

@ It was clear that we needed to:
o Determine the AMSR-E footprint
o Characterize the noise in the AMSR-E field.
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Determining the AMSR-E Footprint

@ Build the AMSR-E — MODIS matchups dataset.
o Nighttime L2 AMSR-E SST pixel,
o A 101 x 125 MODIS L2 SST pixel region.
@ centered on the AMSR-E pixel,
@ with the 125 element dimension is parallel to the nadir track.
@ with at least 90% of the MODIS pixels classified as clear.
o We averaged the MODIS pixels into 4x4 pixel non-overlapping squares.
e This resulted in a total of 775 (25 x 31) MODIS SST measurements/matchup

@ ~4,000,000 globally distributed AMSR-E — MODIS matchups.
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Distribution of Matchups
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@ So the problem we want to solve is:
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@ Or more compactly: Anx1 = MrzsxnHrzsx1 4 enx

where A are the AMSR-E values,
M the MODIS values,

H the AMSR-E footprint vector containing the weighting elements and
€ noise in the data.

@ This is simply a regression relation between A and M.
@ We want to determine the form of H, which minimizes
arg min| Anx1 — MrzsxnHrrs x 12
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Footprint
Bag-it

@ A straight inversion does not work well.
@ Bagging (a.k.a. bootstrapping) is a way of dealing with this.

e Sample N values with replacement from the pool of data.
e Solve
o Repeat R times

@ Average the solutions.

@ Example simulation.
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Bagging — A Simulation

(a) Imposed footprint. Simulated 250,000 matchups with 0.2K o AMSR-E, 0.05K o MODIS.
(b) Retrieved footprint (R; N) = (1; 250,000) (c) (1; 2,000) (d) (2,000; 2,000)
(e) 4 X 4 moving average of (d).
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Results
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Results
Footprint by Cell Position

@ Using 2,000 iterations of 2,000 samples (R; N) = 2,000; 2,000
@ We obtained footprints for all matchups in ranges of 10 cell positions.

%
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Results
Corrected Footprints
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Results

Footprint as a Function of Cell Position, Year and Latitude
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Impact of Footprint on Comparisons with Other Satellite-Derived SSTs

MODIS-1 - average MODIS to AMSR-E with 56 x 56 km footprint.
MODIS-2 - average MODIS to AMSR-E with our footprint.
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Deconvolution
The Approaches

@ Lagrange Multipliers - a way of constraining the inversion (not shown)
@ David Long solution - a more sophisticated constraint

@ Artificial Neural Network (ANN)

@ Convolutional Neural Network (CNN) — will not discuss; results < ANN

@ Training
o With AMSR-E — MODIS matchups
o With LLC-4320 simulated fields.
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AMSR-E Test Field
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Deconvolution
Results — David Long Solution
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Deconvolution

Artificial Neural Network (ANN)

@ 3 layers: 54 node input layer, 10 neuron hidden layer & 1 node output layer.
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LLC-4320
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Deconvolution
Results — ANN Solution
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Deconvolution

Results — Gradient Fields
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Deconvolution

What are the neural nets doing?
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Results — ANN VSST vs AMSR-E VSST
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Poster 13A: Pixel-to-Pixel Variability of AVHRR and MODIS L2 SST Fields
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Conclusions
A Figure of Merit
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Conclusions
Results — SST Differences
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Conclusions
Results — SST Gradient Differences
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Conclusions
AMSR-E Observed in 12 Spectral Bands

Table: AMSR-E Spectral Characteristics

Band | Polarization | Beam Spatial Resolution Most sensitive to
(GHz) Width | (3-dB footprint size)
(°) [km x km]
6.93 V,H 2.2 75 x 43 SST
10.65 V,H 1.5 51 x 29 SST, wind speed
18.7 V,H 0.8 27 x 16 Columnar water vapor
23.8 V,H 0.9 32 x 18 Columnar water vapor
36.5 V,H 0.4 14 x 8 Columnar liquid water, rain
0.2
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6.93 V,H 2.2 75 x 43 SST
10.65 V,H 1.5 51 x 29 SST, wind speed
18.7 V,H 0.8 27 x 16 Columnar water vapor
23.8 V,H 0.9 32 x 18 Columnar water vapor
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@ 6.9 - 36.5GHz channels mapped to common grid.
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Band | Polarization | Beam Spatial Resolution Most sensitive to
(GHz) Width | (3-dB footprint size)
(°) [km x km]
6.93 V,H 2.2 75 x 43 SST
10.65 V,H 1.5 51 x 29 SST, wind speed
18.7 V,H 0.8 27 x 16 Columnar water vapor
23.8 V,H 0.9 32 x 18 Columnar water vapor
36.5 V,H 0.4 14 x 8 Columnar liquid water, rain
0.2

@ 6.9 - 36.5GHz channels mapped to common grid.

@ SST, wind speed, water vapor, liquid water & rain rate
retrieved simultaneously
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Conclusions
AMSR-E Observed in 12 Spectral Bands

Table: AMSR-E Spectral Characteristics

Band | Polarization | Beam Spatial Resolution Most sensitive to
(GHz) Width | (3-dB footprint size)
(°) [km x km]
6.93 V,H 2.2 75 x 43 SST
10.65 V,H 1.5 51 x 29 SST, wind speed
18.7 V,H 0.8 27 x 16 Columnar water vapor
23.8 V,H 0.9 32 x 18 Columnar water vapor
36.5 V,H 0.4 14 x 8 Columnar liquid water, rain
0.2

@ 6.9 - 36.5GHz channels mapped to common grid.

@ SST, wind speed, water vapor, liquid water & rain rate
retrieved simultaneously

@ SST is determined from a combination of brightness
temperatures obtained from pixels of differing spatial
extent.
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Conclusions
AMSR-E Observed in 12 Spectral Bands

Table: AMSR-E Spectral Characteristics

Band | Polarization | Beam Spatial Resolution Most sensitive to
(GHz) Width | (3-dB footprint size)
(°) [km x km]
6.93 V,H 2.2 75 x 43 SST
10.65 V,H 1.5 51 x 29 SST, wind speed
18.7 V,H 0.8 27 x 16 Columnar water vapor
23.8 V,H 0.9 32 x 18 Columnar water vapor
36.5 V,H 0.4 14 x 8 Columnar liquid water, rain
0.2

@ 6.9 - 36.5GHz channels mapped to common grid.

@ SST, wind speed, water vapor, liquid water & rain rate
retrieved simultaneously

@ SST is determined from a combination of brightness
temperatures obtained from pixels of differing spatial
extent.

@ The shape and size of the SST footprint is not obvious.
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Conclusions

What are the neural nets doing?
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Conclusions

Convolutional Neural Network (ANN)

@ Input: a 10 x 10 AMSR-E pixel region and the output is the 10 x 10 target field minus
the AMSR-E field.
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Conclusions
Results — CNN Solution
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