Recent Improvements in AMSR2 Sea Surface Temperature Products

Misako KACHI, Hideyuki FUJII, Akira SHIBATA and Yukio KURIHARA
JAXA/EORC

June 4, 2019 @ ESA/ESRIN, Frascati, Italy
Successor of Aqua/AMSR-E (launched in May 2002), providing continuous data for climate studies and operational applications

Joining A-train constellation (same as Aqua) and also GPM constellation

Carrying AMSR2, a multi-polarization and multi-frequency microwave imager

Observing various water-related ECVs at high spatial resolution

Improving on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability

Achieved designed mission life (5-year) on May 18, 2017, and continues observation

Enough fuels to keep current orbit for more than 15 years
Status of AMSR2 follow-on mission

• “Development of the AMSR2’s successor sensor” is mentioned on The Roadmap for the Basic Plan on Space Policy revised December, 2018.
 – Share the satellite bus with GOSAT-2/TANSO-2 follow-on mission, led by Ministry of Environment (MOE).

• JAXA proceeds with internal process to launch development project.
 – Mission Definition Review (MDR) and project readiness reviews were completed in Jun. 2018.
 – Project Preparation Phase (Phase-A) activities since Sep. 1, 2018.
 – Expect to complete System Definition Review (SDR) in mid-JFY2019 and start Phase-B in latter half of JFY2019.

• Specification of the AMSR2 follow-on instrument
 – Almost equivalent to AMSR2
 – A few high frequency channels (166 GHz and 183 GHz) is considered for approval (166V & 183+/-7V are baseline, 166H & 183+/3V are optional)

• Orbit will be 666 km altitude (same as GOSAT-1) and 13:30 LT in Ascending node (same as GCOM-W)
 – Finer FOV (5% less), narrower swath width (1535km)
Current Issues in AMSR2 SST

• Recent increasing trends in biases ⇒ Re-tuning of calibration table

• Users request higher spatial resolution SST (closer to coast line). 10GHz SST has finer spatial resolution than 6GHz SST, but poor sensitivity less than 10-12 degC ⇒ SST by 3-frequency channels

• More random noises found in 10GHz SST than 6GHz SST (6GHz SST uses simple spatial filter) ⇒ Applying improved spatial filter to both 6 and 10GHz SSTs
AMSR2 V3 SST Validation Status

AMSR2 6GHz SST VS. iQuam V2 (currently transferring to V2.1)

- Bias = 0.040 degC, RMSE = 0.472 degC from Jul. 2012 to Dec. 2018
- Small increasing trends in bias since 2018 due to some drifts of TB. Possible cause is aging of sensor linearity, need further check.
- Decrease of buoys in iQuam V2 is not due cause.
Random Noises in 10GHz SST

6GHz SST (3x3 filter) 10GHz SST (no filter)

Around 3UTC in Jul. 12, 2017
SST by 3-frequency channels (6, 7, and 10 GHz)

- Enable to estimate SST closer to coast line
 - In coastal area, SST where relative differences among three or two SSTs are less than 1.5°C can be used.
- Enable estimate SST where missing in 6GHz SST
 - RFI signals can be removed by comparing thee SSTs.
 - Averages of two (7 and 10GHz) SSTs are used instead of missing 6GHz SST, if difference of two SSTs is less than 1.5°C.
- Reduction of noise in 6GHz SST
 - Due to relatively larger noise in 6GHz SST than other two SSTs, local variability of 6GHz SST is replaced by those of two SSTs.
Comparison of 6G and 3-freq. SSTs

6G and 3-freq. SSTs on Mar.13, 2018
SST in coastal area and ocean eddies are sharpened in 3-freq. SST

6G SST

3-freq. SST
Enable to Estimate SST Closer to Coast Line

Cross section along 37N near the coast (red line) for 6G SST and 3-freq. SST

6G SST

3-freq. SST
SSTs around Japan on Jan. 18, 2017 (dsc.)

- Around Japan and US, 7G SST has more RFIs than other SSTs (white circles)
- The other area, such as Europe & Asia, 6G SST has more RFIs.
- 10G SST also has some RFIs.
Comparison with Buoy (iQuam V2)

CURRENT: 6G SST V3 (A+D)

AMS R2-iQuam V2 SST(V3 06G) Bias & RMSE(All_term M0)

- RMSE = 0.472 degC

6G SST V4_beta (A+D)

AMS R2-iQuam V2 SST(V4 06G) Bias & RMSE(All_term M0)

- RMSE = 0.470 degC

3-freq. SST (far coast) (A+D)

AMS R2-iQuam V2 SST(V4 3band) Bias & RMSE(All_term M0)

- RMSE = 0.486 degC

10G SST V4 all temp. (A+D)

AMS R2-iQuam V2 SST(V4 10G) Bias & RMSE(All_term M0)

- RMSE = 0.678 degC
SSTs without any spatial filter

6GHz SST (no filter) 10GHz SST (no filter)

Around 3UTC in Jul. 12, 2017
SSTs with Improved Spatial Filter

6GHz SST (KZ filter)

10GHz SST (KZ filter)

Around 3UTC in Jul. 12, 2017
Comparison with Himawari/AHI SST

AMSR2 10G SST : 03:37-03:47 UTC on Jul. 12, 2017
Himawari-8 AHI SST: 03:00-03:59 UTC on Jul. 12, 2017

Without KZ filter

AMSR2 10G SST

Himawari-8 AHI SST

Num.=402123
R²=0.960

With KZ filter

AMSR2 10G SST

Himawari-8 AHI SST

Num.=402123
R²=0.986
Comparison with Buoy SST

Buoy SST: iQuam v2.1

Without KZ filter

AMSR2 SST (℃) vs Buoy SST (℃)
RMSE: 0.684
Bias: -0.080
Num.: 33564

With KZ filter

AMSR2 SST (℃) vs Buoy SST (℃)
RMSE: 0.542
Bias: -0.080
Num.: 33654
Summary

• AMSR2 is working in healthy condition. AMSR2 f/o (AMSR3) is now in pre-project phase and expected to become project in winter 2019.
• For new AMSR2 V4 SST, several improvements are planning.
 – In V4, recent positive bias trend due to sensor aging will be corrected.
 – New SST product using 3-frequency channels (6, 7, 10G) is developed.
 • Available coastal SST around 50km distance while 6GHz SST is around 80km from the coast.
 • RMSE is almost equivalent to AMSR2 6GHz SST V3.
 • Spatial Filter should be improved by using KZ filter below.
 – KZ filter is applied to both AMSR2 6GHz and 10GHz SSTs. Validation by buoy (iQuam2.1) shows that;
 • Improvement of RMSE from 0.684 to 0.582; and
 • No bias change before/after filter (-0.08) and no changes in averaged field.
 – SST dependencies to water vapor and wind direction found in V3 will be improved in V4. Currently under investigation.
backup
Enable to estimate SST where missing
SST processing with KZ filter

1. Pre-processing (interpolation/gridded)
 ➢ Resampling swath SST to 0.02 degC grid to make gridded data
 ➢ Pixel value of each grid are distance-weighted average of neighborhood pixels. Since observing points of PMW become more thicker at scan edges than at nadir, avoid to be affected by nonuniformity by spatial distribution of observing points.

2. Application of KZ filter to gridded data
 ➢ Shape of filter is circle with 20-km radius centering target pixel, and simple running mean is applied 3-times.

3. Post-processing (handling missing value)
 ➢ Pixel that was missing before applying KZ filter is set as missing after applying KZ filter
L3 (0.1-grid) and Scan Intervals

Background: AMSR2 SST
0.1-deg grid with NN method
Using L2 and select SST of the nearest neighbor footprint

Plot: Center of footprint
○ SST estimated pixel
× SST missing pixel
Footprint distribution near scan edge

Background: AMSR2 SST
0.1-deg grid with NN method
Using L2 and select SST of the nearest neighbor footprint

Plot: Center of footprint

○ SST estimated pixel
× SST missing pixel
Process 1: Resampling with high-resolution grid, NN method and interpolation

Process 1: 0.02 degC grid with NN method & interpolation

Pixel value of each grid are distance-weighted average of neighborhood pixels

Plot: Center of footprint
- SST estimated pixel
- SST missing pixel
Process 2: Application of KZ filter

Shape of filter is circle with 20-km radius centering target pixel, and simple running mean is applied 3-times.
Comparison with Himawari/AHI SST

AMSR2 10G SST : 03:37-03:47 UTC on Jul. 12, 2017
Himawari-8 AHI SST : 03:00-03:59 UTC on Jul. 12, 2017

AMSR2 10G SST
Himawari-8 AHI SST
Diff (AMSR2 - AHI)
SST dependency to water vapor

- When higher SST (20-25 degC) and dryer TPW (0-5 kg/m²), lower bias in SST is found (c.f., Middle-East and coast of California bay).
- When SST is 10-15 degC and wet TPW (> 45 kg/m²), lower bias in SST is also found.