

Independent validation of Sentinel 3 SST Products

Gary Corlett¹, Anne O'Carroll¹, Igor Tomazic¹, Jean-Francois Piollé², Kevin Pearson³

EUMETSAT¹, Ifremer², University of Reading³

where n is the number of channels

- For SLSTR we use 2 channels during day and 3 during night (3.7 µm not used during day owing to solar contamination)
- We have two views, so we have four SST retrievals in total

* SLSTR provides SST_{skin} *

Nominal Channel Centre	Primary Application
S7: 3.7 μm	SST Retrieval
S8: 11 μm	SST/LST Retrieval
S9: 12 μm	SST/LST Retrieval

Four Possible Retrievals: Nadir 2-channel N2 Nadir 3-channel N3 ual 2-channel **D2** Dual 3-channel **D3**

SLSTR SST Products

• SL2_WCT

- This product provides sea surface temperature for all offered retrieval algorithms.
- Only available to Cal/Val users via ODA (FTP) and Data Centre (Archive)

• SL2_WST

• This product provides the best SST at each SLSTR location in GHRSST L2P format.

- Results shown here for drifting buoys only
- Matchup Databases
- Reprocessing: August 2016 to April 2018
- NRT: April 2018 onwards
- New format -> WST base file plus WCT, MET, RBT-a, RBT-i and RTM auxiliary files
- Post processing
- Fairall/Kantha-Clayson (FKC) model run for skin/depth/time adjustments

		QL Scl	neme
leve l	meaning	P(clear)	Other
C	no_data	< 0	No data; land
1	bad_data	< 0.5	T ₁₁ < 260; SST < 271.15; ice detected; NWP missing
2	worst_quality	< 0.8	$\theta_{\rm sat} > 55$
3	low_quality	< 0.9	Twilight (87.5 < θ_{sol} < 92.5)
4	acceptable_quality		Aerosol detected: abs(ASDI) > 0.2
5	best_quality		

* Do not use data with QL < 5 *

• Available to all via ODA (FTP), EUMETCAST (DVB), CODA (http) and Data Centre (Archive)

• SLSTR-A

- Operational since 05/07/2017 •
- Introduction of Bayesian cloud masking on 04/04/2018
- Reprocessed data from 19/04/2016 to 04/04/2018 now available via CODA REP

• SLSTR-B

- In production since 17/06/2018; harmonized to SLSTR-A
- Operational since 12/03/2019 •

Data quality of both sensors is very good, meeting mission requirements (accuracy < 0,3) K). Main issue is quality of cloud mask in coastal regions (updates planned).

Product notices and other useful information available from EUMETSAT Sea Surface Temperature Services webpage:

https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/SeaSurf <u>aceTemperatureServices/index.html</u>

* Always apply SSES_bias – SST depth remains SST_{skin} after application*

SLSTR-B

SLSTR-B WCT SST_{akin} versus drifter SST_{death}

SLSTR-B WCT SST_tin versus drifter SST_tent

SLSTR-B WCT SST_{skin} versus drifter SST_{denth}

Colours show number of channels; solid lines indicate dual-view; dashed lines indicate nadir-only.

<u>All data shown – no masking applied</u>

SST Image Quality

sea_surface_temperature - 2018-04-05 19:36:56+00:00

Nadir-only

sea_surface_temperature - 2018-04-05 19:36:56+00:00