
Comparisons of Sea Surface Temperature Algorithms for GEO-KOMPSAT-2A Geostationary Satellite Data

Kyung-Ae Park¹, Hye-Jin Woo², Alexander Ignatov³, Boris Petrenko³ ¹Department of Earth Science Education, Seoul National University ²Department of Science Education, Seoul National University ³Center for Satellite Applications and Research, NOAA

Abstract : To develop sea surface temperature (SST) retrieval algorithms for GEO-KOMPSAT-2A (Geostationary - Korea Multi-Purpose Satellite-2A), we compare previously known algorithms such as MCSST and NLSST methods, as well as a recently developed hybrid algorithm and a 4-band algorithm that uses 4-channel brightness temperatures. The traditional empirical algorithms (MCSST and NLSST methods) have been widely used in spite of their local bias according to various and time-varying atmospheric conditions. SST coefficients retrieved by these algorithms are fundamentally based on a regression method between satellite-observed brightness temperatures and in-situ SST measurements from drifters or moored buoys. The hybrid algorithm, based on a regression method between the incremental values and a scaling method, is applied to estimate the coefficients of Himawari-8 data as a proxy for GK-2A data. In addition, the performance of the 4-band algorithm, as another regression method, is tested for SST estimation using Himawari-8 data. Root-mean-square (RMS) and bias errors are presented for each algorithm in comparison to drifter temperatures. The comparison with in-situ SST measurements shows that hybrid SSTs have accuracies similar to the 4-band SSTs, with RMS errors are 0.55°C and 0.48°C, respectively. However, the errors of the estimated SSTs reveal, in some cases, a significant difference between hybrid SSTs and 4-band SSTs in terms of atmospheric variables such as moisture, wind speed, and distance from the cloud edge.

Matchup Procedure

• Temporal interval : < 30 minutes

• Spatial criteria : < 2 km

(pixel size of Himawari-8/AHI image)

Matchup Database	Area	Period	#
Himawari8 – GTS Drifter – Simulated BT – OSTIA SST	90°S~90°N, 60°E~220°E	2016.4.1 ~ 2016.4.30	66,965

SST Retrieval Algorithm

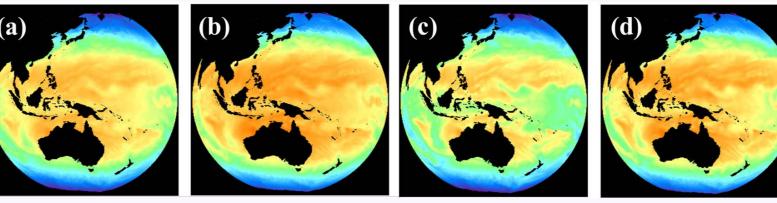
Linear (MCSST) Algorithm

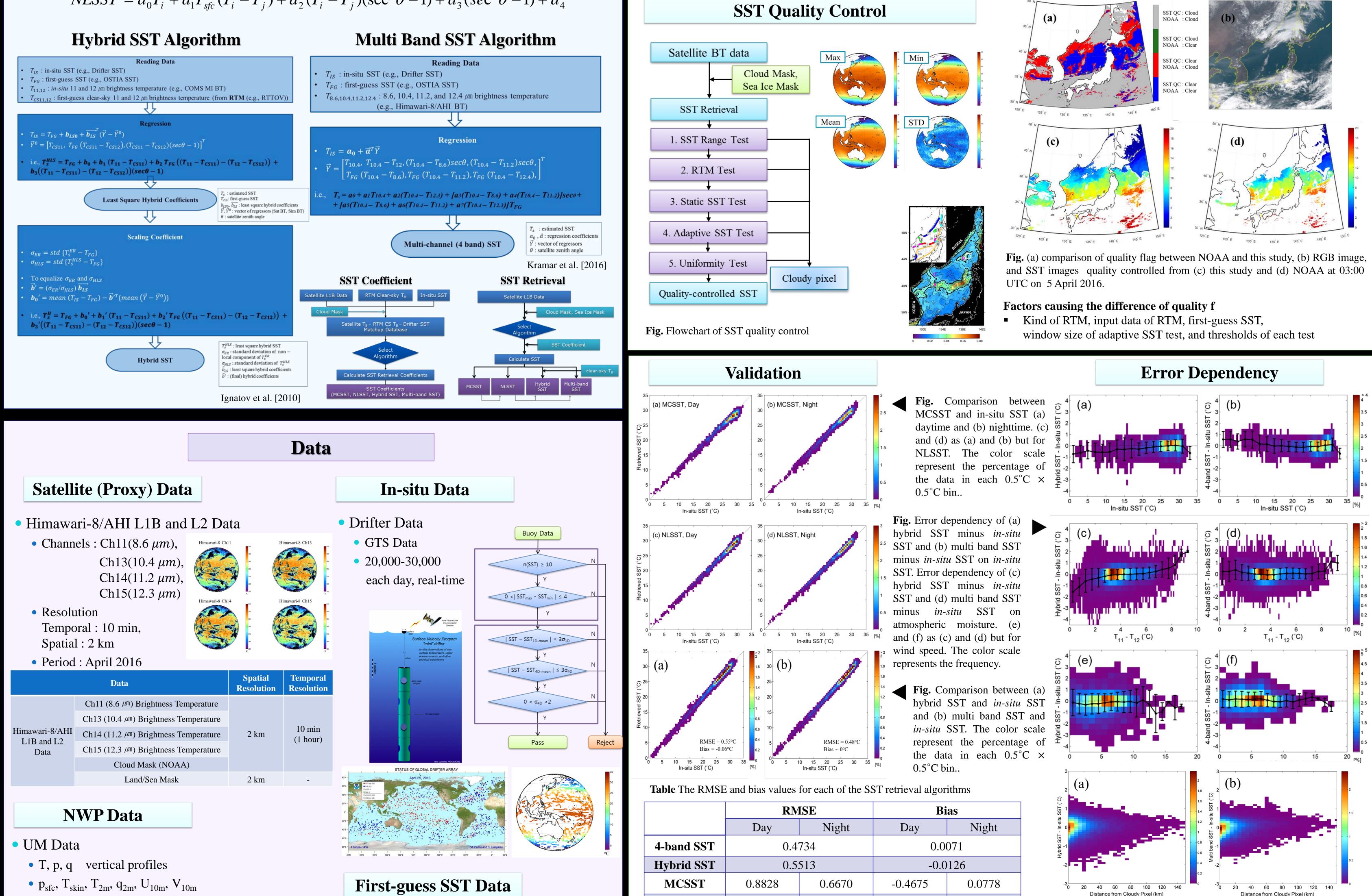
 $MCSST = a_0T_i + a_1(T_i - T_i) + a_2(T_i - T_i)(\sec \theta - 1) + a_3(\sec \theta - 1) + a_4$ Nonlinear (NLSST) Algorithm

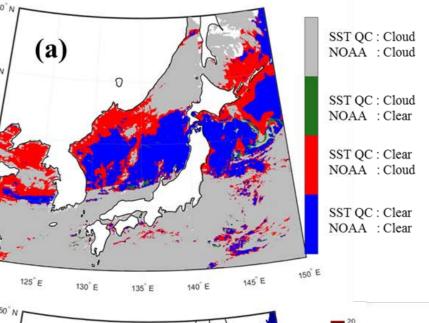
 $NLSST = a_0T_i + a_1T_{sfc}(T_i - T_i) + a_2(T_i - T_i)(\sec \theta - 1) + a_3(\sec \theta - 1) + a_4$

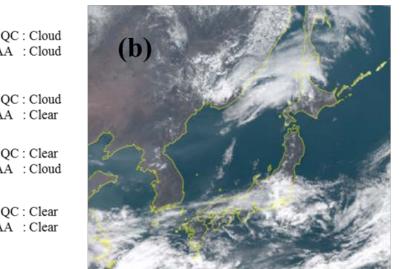
Reading Data Reading Data • T_{IS} : in-situ SST (e.g., Drifter SST) • T_{IS} : in-situ SST (e.g., Drifter SST) • T_{FG} : first-guess SST (e.g., OSTIA SST) • T_{FG} : first-guess SST (e.g., OSTIA SST) • $T_{11,12}$: *in-situ* 11 and 12 μ m brightness temperature (e.g., COMS MI BT) $T_{8.6,10.4,11,2,12.4}$: 8.6, 10.4, 11.2, and 12.4 μ m brightness temperature • T_{CS11.12} : first-guess clear-sky 11 and 12 µm brightness temperature (from RTM (e.g., RTTOV)) (e.g., Himawari-8/AHI BT) Regression $T_{IS} = T_{FG} + \boldsymbol{b}_{LS0} + \overline{\boldsymbol{b}_{LS}}^{T} (\vec{Y} - \vec{Y}^{0})$ Regression $\vec{Y}^{0} = [T_{CS11}, T_{FG} (T_{CS11} - T_{CS12}), (T_{CS11} - T_{CS12})(sec\theta - 1)]^{T}$ $T_{IS} = \boldsymbol{a_0} + \vec{\boldsymbol{a}}^T \vec{Y}$ $\vec{Y} = \begin{bmatrix} T_{10.4}, T_{10.4} - T_{12}, (T_{10.4} - T_{8.6}) \sec\theta, (T_{10.4} - T_{11.2}) \sec\theta \end{bmatrix}^{T_{10.4}}$ i.e., $T_s^{HLS} = T_{FG} + b_0 + b_1 (T_{11} - T_{CS11}) + b_2 T_{FG} ((T_{11} - T_{CS11}) - (T_{12} - T_{CS12})) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) - (T_{12} - T_{CS12}) + b_2 T_{FG} (T_{11} - T_{CS11}) + b_2 T_{FG} (T_$ $b_3((T_{11} - T_{CS11}) - (T_{12} - T_{CS12}))(sec\theta - 1)$ $T_{FG} (T_{10.4} - T_{8.6}), T_{FG} (T_{10.4} - T_{11.2}), T_{FG} (T_{10.4} - T_{12.4}),$ estimated SST Least Square Hybrid Coefficients first-guess SS $+ [a_5(T_{10.4} - T_{8.6}) + a_6(T_{10.4} - T_{11.2}) + a_7(T_{10.4} - T_{12.3})]T_{FG}$ LS : least square hybrid coefficients 0 : vector of regressors (Sat BT, Sim BT) θ : satellite zenith angle

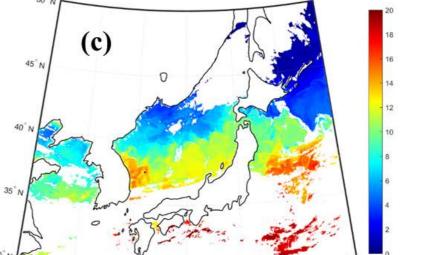
• Simulated Clear-sky Brightness Temperature

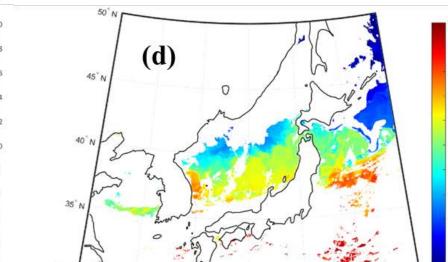


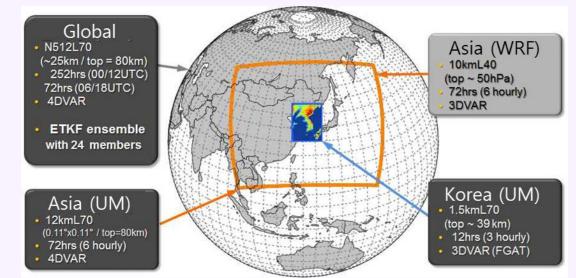

Fig. Example of RTM-simulated (a) 8.6-µm (Ch11), (b) 10.4-µm (Ch13), (c) Fig. (a) in-situ SST, (b) satellite-observed 10.4-^{µm} BT, and (c) first-guess SST (OSTIA 11.2-µm (Ch14), and (d) 12.3-µm (Ch15) clear-sky brightness temperatures. SST) on the collocation points.

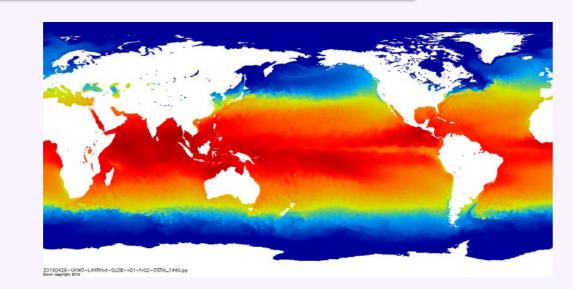

SST Coefficient


Iybrid SST $T_s = T_{FG} + a_0 + a_1(T_{11} - T_{CS11}) + a_2[(T_{11} - T_{CS11}) - (T_{12} - T_{CS12})]T_{FG} + a_3[(T_{11} - T_{CS11}) - (T_{12} - T_{CS12})](sec\theta - 1)$			
a_0	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
-0.4381	0.9475	0.0566	-0.4655


$T_{s} = a\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + [a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + [a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + [a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + [a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + [a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + a2(T_{10.4} - T_{12.4}) + a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{12.4}) + a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.2})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{11.4}) + a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.4})]sec\theta + a1T_{10.4} + a2(T_{10.4} - T_{11.4}) + a3(T_{10.4} - T_{8.6}) + a4(T_{10.4} - T_{11.4})]sec\theta + a3(T_{10.4} - T_{11.4}) + a$ **4-Band SST** $+ [a_5(T_{10.4} - T_{8.6}) + a_6(T_{10.4} - T_{11.2}) + a_7(T_{10.4} - T_{12.4})]T_{FG}$


a_0	<i>a</i> ₁	a_2	<i>a</i> ₃
24.0775	0.9243	-1.2284	0.5087
a_4	a_5	a ₆	a_7
0.7260	-0.0259	-0.0062	0.0724





Himawari-8/AHI	Ch13 (10.4 μ m) Brightness Temperature Ch14 (11.2 μ m) Brightness Temperature	2 km	1(
L1B and L2 Data	Ch14 (11.2 µm) Brightness Temperature Ch15 (12.3 µm) Brightness Temperature	2 KIII	(1
Data	Cloud Mask (NOAA)		
	Land/Sea Mask	2 km	

Spatial Resolution	N512 (25 km)
Vertical Level	L70 (Top 80 km)
Number of Grid	1024(east-west) x 769(south-north)
Prediction Interval	1 hour

- OSTIA Data
 - Daily composite SST
 - Spatial resolution : 0.05°

	RMSE		Bias	
	Day	Night	Day	Night
4-band SST	0.4734		0.0071	
Hybrid SST	0.5513		-0.0126	
MCSST	0.8828	0.6670	-0.4675	0.0778
NLSST	0.5417	0.5353	-0.1113	-0.1025

Fig. Differences (°C) of (a) hybrid SSTs and (b) multi band SSTs from drifter temperatures as a function of a distance from a nearest cloudy pixel.

Summary and Conclusion

- The four SST retrieval algorithms were applied to geostationary satellite observed data and accuracy of these algorithms was examined.
- Comparison with in-situ SST measurements showed that the hybrid SSTs had similar accuracy with the multi band SSTs, whose rootmean-square errors (RMSEs) were 0.55°C and 0.47°C.
- It is important to remove the cloud pixel exactly for retrieving accurate SST data from GK2A/AMI.

Acknowledgement

This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment" program funded by NMSC (National Meteorological Satellite Centre) of KMA (Korea Meteorological Administration).