

ESA Climate Change Initiative Phase-II

Sea Surface Temperature (SST)

www.esa-sst-cci.org

Generating a Climate data record for SST from Passive Microwave observations

Jacob L. Høyer, Jörg Steinwagner, Pia Englyst Kevin Pearson, Leif Toudal Pedersen, Chris Merchant & Tom Block

Outline

- Motivation
- Development of PMW retrieval algorithms
 - MMD generation
 - Regression retrievals
 - Optimal estimation retrievals
- Impact of clouds
- Summary

SST CDR from PMW

GHRSST - 18, Qingdao

Motivation

- PMW SST retrievals are valuable supplement to IR SSTs due to the capability to see through clouds and small response to aerosols
- Little European activity within the PMW retrieval work
- DMI has been working with PMW for sea ice concentration for many years
- Optimal Estimation is currently being developed for Sea ice within ESA CCI Sea Ice (SICCI) context

SST CDR from PMW

GHRSST - 18, Qingdao

Aims

- Develop retrieval algorithms for AMSR-E + AMSR2 MW SST
- Produce and validate L2 MW SST products for 2002 to 2016
- Produce blended IR + MW L4 SST analysis
- Assess impact of MW in analysis relative to analysis including AVHRR GAC
- Assess the impact of clouds on PMW SST retrievals
- Publish results

SST CDR from PMW

Development of PMW retrievals

SST CDR from PMW

METEO FRANCE Toujours un temps d'avance

Multisensor Matchup Dataset (MMD)

Matchups with In situ and satellite

- MMD06b
 - AMSR-2 vs in situ (2012-2014)
- MMD06C
 - AMSR-E vs In situ (2002-2011)
- MMD14

esa

- AMSR-E vs AATSR (2002-2011)
- All MMDs include level 1 brightness temperatures • and auxiliary data, such as NWP, needed for algorithm developments
- In situ data: Drifting buoys, Argo floats, GTMBA, Radiometer, Ships, XBT, CTD, Bottle, Animal

SST CDR from PMW

GHRSST - 18, Qingdao

Page 6

National Oceanography Centre

MMD6c: AMSR-E vs insitu

- L2A TBs from RSS (NSIDC), version 7
 - Resampled to a data resolution; 10 km, all channels
 - Orbit files, ascending and descending
- 2002-2011
- Every matchup includes:
 - 21x21 extract of AMSR-E Tbs + aux info
 - 5x5 extract of NWP variables
 - 60 vertical layers for NWP
 - In situ SST history
 - 5x5 sea ice
- 114 variables for each matchup.
- Netcdf format

SST CDR from PMW

GHRSST - 18, Qingdao

MMD06c coverage, drifters

- Increasing data coverage from 2002
- Gaps will be filled in update

Page 8

Space

Geographical distribution

- High density in Barents Sea, and North Atlantic
- Low coverage in equatorial regions and Indonesian waters

SST CDR from PMW

GHRSST - 18, Qingdao

Regression algorithms

SST CDR from PMW

Norwegian

Institute

Meteorological

METEO FRANCE -----DMi Toujours un temps d'avance

Regression algorithms

- Usual way of retrieving SST from PMW (Wentz and Meissner, 2007, Han et al., 2012)
- RSS uses a two step algorithm, coefficients derived for SST and wind intervals
- In this work we have used: 6V, 6H, 10V,10H, 18V, 18H, 23V, 23H, 36V, 36H:
 - 1 simple overall (including windspeed)
 - 2 step (1:overall, 2:SST and wind, RSS like)
 - Latitudinal (coefficients every 10 degree latitude)
 - Latitudinal with cross track correction, separate Asc/Des

$$SST = A(lat) + \sum_{i}^{n} (B_{i}(lat) * Tb_{i} + C_{i}(lat) * Tb_{i}^{2}) + D(Xpos, lat) , n = 10$$

- Algorithm regressed towards drifting buoy observations
- Preliminary results shown here are from latitudinal retrieval method with crosstrack correction and for year 2010 only.

Effect of cross track biases

- Bias can be from -0.4 to 0.4 Deg C. ۲
- Cross track position included in regression model

Oceanography Centre

ATURAL ENVIRONMENT RESEARCH C

Norwegian

Institute

 \sim

Met Office

Meteorological

ΜΕΤΕΟ

FRANCE

Toujours un temps d'avance

÷

BROCKMANN

CONSULT

pace

Wind dependence

Reading esa

Toujours un temps d'avance

METEO FRANCE

● ∹☆들 ╢ ᄐ

BROCKMANN CONSULT

Error vs. Day of year and latitude

RFI influence

- RFI is included in regression ٠ model product
- One source is geostationary TV satellites
- In data set: Geostationary ٠ reflection longitude
- Work with Chelle on filtering ٠ criteria

SST CDR from PMW

GHRSST - 18, Qingdao

Optimal Estimation Algorithms

SST CDR from PMW

Norwegian

Institute

Meteorological

Toujours un temps d'avance

ΜΕΤΕΟ

FRANCE

-----DMi

Why Optimal Estimation ?

- PMW contain valuable information about most of the geophysical 'noise' parameters.
- OE is Inversion of forward model using statistical estimation theory
- Development of OE at Reading demonstrated challenges using RTTOV (wind speed bias)
- DMI implemented the Wentz et al., 2002, 2012 forward model and developed the inversion model.
- Important with iterative solutions for PMW retrievals

SST CDR from PMW

GHRSST - 18, Qingdao

DMI OE setup

Retrieved parameters, 2010

Retrieved SST

Retrieved TCLW

Retrieved TCWV

0 10 20 30 40 50 6							
	0	10	20	30	40	50	60

Retrieved Wind

SST error vs Sim - obs Tbs

SST CDR from PMW

GHRSST - 18, Qingdao

SST error vs retr. wind speed

SST CDR from PMW

BROCKMANN

CONSULT

Space

ConneXion

Global performance

Harmonizing AMSR-E and AMSR2

- A brightness temperature adjustment is anticipated to make AMSR-E and AMSR-2 consistent.
 - True SSTs from MMDs will be propagated through the forward model to generate simulated TBs
 - Simulated and observed TBs will be analysed to reveal absolute biases and temporal variations in TBs biases.
- Quadratic L1 adjustments to AMSR-2 to reference with AMSR-E will be tested.

SST CDR from PMW

Page 23

GHRSST - 18, Qingdao

Prototype PMW Products

Category of product and description	Satellite sensors & data to be used	Time period	Level of data to be produced for each sensor (resolution/grid spacing)
Prototype SST depth retrieved from data obtained from the AMSR-E instrument.	AMSR-E L2A (from RSS)	June 2002- October 2011	L2P (10km)
Prototype SSTs depth retrieved from data obtained from the AMSR2 instrument.	AMSR2 L1R (from JAXA)	July 2012 to December 2016	L2P (35km x 61km)
Analysis Prototype gap-free daily analyses of the ATSR, AVHRR, AMSR-E and AMSR2 products for 2002-2016.	ATSR, AVHRRs, AMSR-E and AMSR2 products	June 2002 to December 2016	L4 (0.05°)

SST CDR from PMW

Reading

 \sim

Norwegian Meteorological Institute

GHRSST - 18, Qingdao

Impact of clouds on PMW SSTs

SST CDR from PMW

Norwegian

Institute

Meteorological

Toujours un temps d'avance

ΜΕΤΕΟ

FRANCE

Qingdao

Tasks within SST CCI

- Produce a multi-sensor matchup data set including cloud observations
- Assess the impact of clouds on the PMW SST algorithm performance
- Assess the potential for using auxiliary information to improve the PMW SST retrievals
- Publish the results

SST CDR from PMW

Norwegian

Institute

Meteorological

GHRSST - 18, Qingdao

F

CALIPSO and Modis cloud products

- Modis cloud mask (46 parameters)
 - Cloud_Mask_1km
 - Cloud_Mask_5km
- Calipso Since April 28, 2006 with the cloud profiling radar system on the CloudSat satellite.
 - Level 2 cloud data products incl. 5 km cloud layer, 1 km cloud layer, 333m cloud layer, 5 km cloud profile, vertical feature mask and polar stratospheric cloud mask.

Examples of 10 daytime (left) and nighttime (right) view

CALIOP Vertical Feature Mask product

Vertical resolutions: 30m, 60m, 180m

Key parameters

	Feature type	Cloud subtype	Phase
0	Invalid	Low, overcast, thin (transparent St, Sc and fog)	Unknown
1	Clear	Low, overcast, thick (opaque St, Sc and fog)	lce
2	Cloud	Transition Stratocumulus	Water
3	Aerosol	Low, broken (trade Cu and shallow Cu)	НО
4	Strato	Altocumulus (transparent)	
5	Surface	Altocumulus (opaque, As, Ns, Ac)	
6	Subsurfa ce	Cirrus (transparent)	
7	No signal	Deep convective (opaque As, Cb, Ns)	

Examples of cloud fraction

Oceanography Centre

Norwegian Meteorological Institute

Summary

- Several activities within development of PMW retrieval algorithms within ESA CCI project
- MMDs have been created both for AMSR-E and AMSR2
- Tested retrieval models include regression and Optimal Estimation
- Atmospheric influence (clouds) will be examined using Calipso data
- CCI prototype products will include SSTdepth from AMSR-E and AMSR 2 (2002-2016) in L2P format (+ L4)
- Development still ongoing, and shows promising results

