



## Retrieval of diurnal cycles in "depth" and "skin" SSTs from the new generation ABI/AHI geostationary sensors with ACSPO

Boris Petrenko<sup>(1,2)</sup>, Alexander Ignatov<sup>(1)</sup>, Maxim Kramar<sup>(1,2)</sup>, Yury Kihai<sup>(1,2)</sup>, Xinjia Zhou<sup>(3)</sup>, Kai He<sup>(3)</sup>

(1) NOAA STAR, USA; (2) GST, Inc., USA; (3) CSU CIRA, Inc., USA

## Objectives

- Processing data of the geostationary Himawari-8 AHI and GOES-16 ABI at NOAA with the ACSPO system has shown the capability of monitoring the diurnal cycle (DC) in SST
- However, it was recognized that <u>quantitative</u> estimation of DC shapes and magnitudes requires further optimization of SST algorithms
- In particular, substantial difference in the DCs in SSTskin and SSTdepth calls for more specific targeting the retrievals at each of the two SSTs
- Two existing ACSPO products, the Global Regression (GR) SST and the Piecewise Regression (PWR) SST, already can be viewed as certain approximations of SSTskin and SSTdepth.
- The presentation discusses possible improvements to the ACSPO AHI/ABI products in terms of DC monitoring

## **Current ACSPO SST equation for AHI/ABI**

| AHI/ABI bands use | d for SST:         |
|-------------------|--------------------|
| Band              | 11 13 14 15        |
| Wavelength (µm)   | 8.6 10.4 11.2 12.3 |

$$\begin{split} T_{s} &= a_{0} + a_{1}T_{11} + a_{2}(T_{11} - T_{8}) + a_{3}(T_{11} - T_{10}) + a_{4}(T_{11} - T_{12}) + \\ &+ [a_{5} + a_{6}T_{11} + a_{7}(T_{11} - T_{8}) + a_{8}(T_{11} - T_{10}) + a_{9}(T_{11} - T_{12})]S_{\vartheta} + \\ &+ [a_{10}(T_{11} - T_{8}) + a_{11}(T_{11} - T_{10}) + a_{12}(T_{11} - T_{12})]T_{s}^{0} \end{split}$$

 $T_{s'} T_{10'} T_{11'} T_{12}$ observed BTs $S_{\vartheta}=1/cos(\vartheta)-1$  $\vartheta$  is VZA $T_{s}^{0}$ L4 SST in °C (currently by Canadian Meteorological Center - CMC)a'sregression coefficients, trained against drifters and mooring buoys

Using the same equation for day and night minimizes DC discontinuities

## **ABI/AHI SST products in the current ACSPO**

| Algorithm                           | Global Regression (GR) SST                                                   | Piecewise Regression (PWR) SST                                                                                                                                                        |
|-------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Representation in ACSPO GDS2 file   | "sea_surface_temperature"                                                    | "sea_surface_temperature"<br>-"SSES_bias"                                                                                                                                             |
| Stratification of coefficients      | Single set of coefficients                                                   | Uses multiple sets of coefficients<br>for separate segments of the SST<br>domain, defined in the space of<br>regressors ( <i>Petrenko et al.,</i><br><i>GHRSST-XVI; JTECH, 2016</i> ) |
| Training of<br>coefficients         | Fitting <i>in situ</i> SST under the constraint<br>"mean sensitivity* =0.95" | Best (unconstrained) fitting<br><i>in situ</i> SST                                                                                                                                    |
| Precision wrt <i>in situ</i><br>SST | ~0.4 K                                                                       | ~0.25 K                                                                                                                                                                               |
| Sensitivity to SSTskin              | ~0.7-1.1                                                                     | Not controlled                                                                                                                                                                        |
| Approximation of:                   | SSTskin                                                                      | SSTdepth                                                                                                                                                                              |

\*The definition of sensitivity by Merchant et al. (GRL, 2009) is used

## **Improving SSTdepth estimates**

### Bias and SD of AHI PWR SST wrt CMC (March 2017)



- The DC magnitude ≈0.25 K
- SD wrt CMC ≈0.2-0.3 K

## Bias and SD of AHI PWR SST wrt in situ SST (March 2017)



- PWR SST fits in situ SST with SD≈0.25 K
- The residual DC magnitude wrt in situ SST (~0.15 K)
- The reason for inaccurate reproduction of DC in SSTdepth is that observed BTs respond to SSTskin, which is in general biased wrt SSTdepth.

## **Piecewise Regression "depth" SST (PWRdepth SST)**

- The reproduction of DC in SSTdepth may be improved by accounting for SSTskin/SSTdepth bias
- The SSTskin/SSTdepth bias is driven by many variables and, among them, by <u>wind</u> <u>speed (V)</u> and <u>Local Solar Time (LST)</u>, which are available during L2 processing.
- These two variables are introduced into the equation for modified **PWRdepth SST**:

$$\begin{split} T_{s} &= a_{0}(LST) + a_{1}T_{11} + a_{2}(T_{11} - T_{8}) + a_{3}(T_{11} - T_{10}) + a_{4}(T_{11} - T_{12}) + \\ &+ \left[a_{5} + a_{6}T_{11} + a_{7}(T_{11} - T_{8}) + a_{8}(T_{11} - T_{10}) + a_{9}(T_{11} - T_{12})\right]S_{\vartheta} + \\ &+ \left[a_{10}(T_{11} - T_{8}) + a_{11}(T_{11} - T_{10}) + a_{12}(T_{11} - T_{12})\right]T_{s}^{0} + a_{13}V \end{split}$$

- GFS Wind speed is added to the equation as a regressor
- LST is accounted for by correcting the offsets in the SST equations for every LST hour. During L2 processing, the offsets are interpolated to actual LST.

| Reference                             | PWR SST (current) | PWRdepth SST      | In situ SST |
|---------------------------------------|-------------------|-------------------|-------------|
| Training MDS: January – December 2016 |                   |                   |             |
| In situ SST                           | 0.25 K            | 0.23 K            | 0           |
| СМС                                   | 0.17 K            | 0.19 K            | 0.28 K      |
|                                       | Validation MDS: J | anuary-April 2017 |             |
| In situ                               | 0.26 K            | 0.25 K            | 0           |
| СМС                                   | 0.17 K            | 0.20 K            | 0.27 K      |

Accounting for wind speed and LST:

✓ Reduces SD wrt *in situ* SST

✓ Increases SD wrt CMC, brings it closer to the SD of *in situ* SST-CMC

### **PWR SSTs - CMC as functions of wind speed**

Validation MDS: January – April 2017



PWRdepth SST makes the dependencies more consistent with in situ SST

## **PWR SSTs - CMC as functions of Local Solar Time**



#### **PWRdepth SST:**

- ✓ Increases the DC magnitude, brings it closer to in situ SST
- ✓ Significantly reduces DC magnitude wrt *in situ* SST
- ✓ Shifts the times of DC maximum and minimum closer to *in situ* SST

## **Improving SSTskin estimates**

### Bias and SD of Global Regression SST wrt CMC (AHI, March 2017)



• GR SST shows diurnal signal with magnitude  $\approx 0.5$  K and SD  $\approx 0.4-0.6$  K

- The lack of "ground truth" for SSTskin precludes validation of estimated DC magnitude
- It is assumed, however, that the estimates of DC are affected by variable biases and sensitivity, typical for global regression algorithms

## The Piecewise Regression "skin" SST (PWRskin SST)

- The **Piecewise Regression (skin) SST (PWRskin SST)** algorithm is aimed at :
  - ✓ Reducing variability of SST biases and sensitivity compared with GR SST;
  - ✓ Bringing sensitivity closer to 1
- The **PWRskin SST** uses the segmentation of the SST domain, in the space of regressors, like it is done in the current PWR SST
- PWRskin SST coefficients are trained under the constraint "mean sensitivity =1"

## Statistics of AHI GR and PWRskin SSTs wrt in situ SST

#### All the statistics are for matchups with V>6 m/s

| Algorithm   | SD           | Mean sensitivity      | SD of sensitivity |
|-------------|--------------|-----------------------|-------------------|
|             | Training MDS | : January-December 2  | 2016              |
| GR SST      | 0.48 K       | 0.95                  | 0.10              |
| PWRskin SST | 0.39 K       | 1.00                  | 0.06              |
|             | Validation I | MDS, January-April 20 | 17                |
| GR SST      | 0.44 K       | 0.94                  | 0.10              |
| PWRskin SST | 0.40 K       | 1.00                  | 0.06              |

#### PWRskin vs. GR SST:

- ✓ SDs are smaller (suggests more uniform regional biases)
- ✓ Mean sensitivities are closer to optimal
- ✓ SDs of sensitivities are smaller (sensitivity is less variable )

## Bias, SD wrt in situ SST and sensitivity of GR and PWRskin SSTs as functions of latitude



• GR SST biases and sensitivity are non-uniform, increasing from low to high latitudes

 PWRskin SST biases are more uniform, SD is smaller, sensitivity is less variable and closer to optimal

## Biases in GR and PWRskin SSTs wrt CMC as functions of local solar time

#### Validation MDS: January-April 2017, all winds

| Statistics        | <i>In situ</i> SST | GR SST | PWRskin<br>SST |
|-------------------|--------------------|--------|----------------|
| DC<br>magnitude   | 0.24 К             | 0.45 K | 0.28 K         |
| LST of<br>minimum | 6:30               | 3:30   | 3:30           |
| LST of<br>maximum | 15:30              | 13:30  | 13:30          |

- DC minima and maxima in both GR and PWRskin SSTs occur earlier than in *in situ* SST
- The DC magnitude in PWRskin SST significantly reduces, due to more uniform biases and sensitivity



# Examples of GR, PWRskin and PWRdepth SSTs with the experimental ACSPO version

## Time series of bias and SD wrt CMC in experimental ACSPO version (AHI, 1-6 January 2016)



| Parameter    | GR     | PWRskin | PWRdepth |
|--------------|--------|---------|----------|
| DC magnitude | 0.5 K  | 0.35 K  | 0.25 K   |
| SD wrt CMC   | 0.45 K | 0.4 K   | 0.2 K    |

DC magnitude and SD wrt CMC reduce from GR to PWRdepth SST

Maxima and minima of DC in PWRdepth SST happen later than in PWRskin and GR

## GR, PWRskin and PWRdepth SSTs minus CMC (AHI, 01-08-2016, 5:00 UTC, Day)



- PWRskin SST reduces the diurnal signal and SD, compared with GR SST
- PWRdepth SST further the diurnal signal and SD wrt CMC

## GR, PWRskin and PWRdepth SSTs minus CMC (AHI, 01-08-2016, 18:00 UTC, Night)



- PWRskin SST reduces cloud leakages and SD, compared with GR SST
- PWRdepth SST further SD wrt CMC

## GR, PWRskin and PWRdepth SSTs minus CMC (G-16 ABI, 05-24-2017, 20:00 UTC, Day)

The G16-ABI images are preliminary and non-operational



- PWRskin SST reduces the diurnal signal and SD compared with GR SST
- PWRskin SST also reduces cold SST anomaly over the Atlantic ocean
- PWRdepth SST further reduces deviations from CMC

## GR, PWRskin and PWRdepth SSTs minus CMC (G-16 ABI, 05-24-2017, 20:00 UTC, Day)

The G16-ABI images are preliminary and non-operational



- PWRskin SST reduces SD compared with GR SST
- PWRskin SST also reduces cold SST anomaly over the Atlantic ocean
- PWRdepth SST further reduces deviations from CMC

## Summary and future work

- Two Piecewise Regression algorithms have been developed to improve the reproduction of diurnal signals in "skin" and "depth" SST
- The Piecewise Regression "depth" SST:
  - ✓ Accounts for the dependencies of SSTskin/SSTdepth bias from wind speed and local solar time
  - ✓ Improves the reproduction of DC in *in situ* SST (including the magnitude and the times of maxima and minima).

#### • The Piecewise Regression "skin" SST:

- ✓ Minimizes regional biases and variations in sensitivity, typical for Global Regression SST
- ✓ Is expected to improve the reproduction of DC in SSTskin
- Large difference between DC magnitudes in GR and PWRskin SSTs illustrates the importance of controlling variations in SST biases and sensitivity for monitoring the DC in SSTskin
- The future developments will be focused at:
  - ✓ Extensive testing, validation and further enhancement of the "skin" and "depth" SST products,
  - ✓ Finding new sources of ground truth for SSTskin and new ways of SSTskin validation
  - ✓ After testing, these new algorithms may be implemented in one of the future versions of ACSPO

## Thank you