

Quasi-Deterministic Cloud detection for Infrared Sea Surface Temperature Retrieval from Satellite Imager measurements

Prabhat K. Koner

ESSIC/NOAA

Acknowledgement:

Funding: NASA Grant number NNX14AP64A Computing Facility: Eileen Maturi, NOAA Contribution from: Andy Harris, NOAA/ESSIC

Introduction

Prabhat K. Koner, Andy R. Harris & Eileen Maturi, Hybrid cloud and error masking to improve the quality of deterministic satellite sea surface temperature retrieval and data coverage, Remote Sensing Environment, vol. 174, p. 266-278, 2016.

A quasi-deterministic hybrid cloud and error mask (CEM) is demonstrated using both functional spectral differences (FSD) and RT calculations (DD) for GOES-13 imager IR measurement.

Prabhat K. Koner & Andy R. Harris, Improved quality of MODIS sea surface temperature retrieval and data coverage using physical deterministic methods, Remote Sens. 2016, 8(6), 454; doi:10.3390/rs8060454.

Improved CEM is proposed using same FSD with GOES-13 derived coefficients and RT based tests are altered due to more channels available in MODIS. SST is retrieved using same MTLS.

Data and Software downloaded

- MODIS L2P SST: <u>ftp://ftp.nodc.noaa.gov/pub/data.nodc/ghrsst/L2P/MODIS_A/JPL/</u>
- MODIS L1b & Geo Loc: ftp://ladsweb.nascom.nasa.gov/allData/6/
- GOES-13: NOAA.
- VIIRS L2 NAVO SST: <u>ftp://podaac-ftp.jpl.nasa.gov/allData/ghrsst/</u> <u>data/GDS2/L2P/VIIRS_NPP/NAVO/v1 or v2/</u>
- VIIRS L2 OBPG SST: <u>http://oceandata.sci.gsfc.nasa.gov/VIIRS/L2/</u>
- VIIRS-A L1b & Geo-Loc: SCDR, NOAA.
- GFS <u>ftp://nomads.ncdc.noaa.gov/GFS/Grid4/</u>
- Buoy data: http://www.star.nesdis.noaa.gov/sod/sst/iquam/
- CRTM : <u>http://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1/</u>
- NGAC Aerosol data: Personal communication with Jun Wang, NCEP, NOAA.

Data and Forward model specifications

- **Forward model using ver. CRTM2.1**
- Monthly point matchups
- Buoy (coastal, Moore & drifters)
- □ iQUAM quality control *in situ* data
- **GFS profile data including surface**
- □ NGAC aerosol profiles
- **TTLS/MTLS** inverse method

Quantitative test for Cloud algorithm

e.g.:

Many validations are based on visually estimated cloud amounts reported by observers. Kotarba, A. Z. (2009). Atmospheric Research, 92, 522–530

We proposed experimental filter (EXF) for cloud test:

 $abs(SST_b - SST_g - rtv_{3.9}) \neq 1; rtv_{3.9} = \frac{T_{3.9}^m - T_{3.9}^s}{-r^{SST}}$

Limitation of prevalent Cloud algorithms

Left Panel: Cloud leakages (CL); Several publications report that the CL is one of hurdles for improving SST quality.

Right Panel: False Alarms (FA); This is new. The reports on enormous FA for operational cloud algorithm are seldom.

5

SST_b-SST_{o'} K

10

-5

-10

-10

-5

GOES-13, June 2012

MODIS-A, May 2015

Validation of EXF

- Mutually inconsistence between EXF & TTLS is verified by cSST4
- Coefficients of cSST4: calculates using matches of Nov. 2013
- The RMSE for set of FA pixels:

 < 0.3 K TTLS
 < 0.5 K + CST4
 - < 0.5 K cSST4
- All RMSEs under EXF < 0.7 K SST4 (opr) Cloud Free (QL=5)
- IG error for all sets are ~ 1.2
 K; confirms that EXF selection is independent of IG
- ✤ 50% of TTLS SST < 0.22 K</p>

(~ buoy random error)

Some history of Cloud detection using Spectral differences

Saunders & Kriebel: APOLLO (1988) Spectral Differences (11 & 12 μms) Ackerman et al. : MODIS (~2000) Spectral Differences (6.7 & 11 μms) Jedlovec : GOES13 (2008) Spectral Differences (3.9 & 11 μms) Walker et al: GOES13 (2012) Spectral Differences (11 & 13.4 μms)

Relaxed and TCWV dependent threshold are implemented in our cloud and error mask (CEM) algorithm. TCWV obtains from GFS data and it is unique from other operational cloud algorithms.

Normalized spectral differences in CEM

Coefficients are calculated using GOES-13 match ups of June 2010

GOES-13, Jan 2013

MODIS-A, Jan 2015

Spec. Diff. between 13.4 and 11 μ m of MODIS is interesting and not explore extensively.

RT based Double differences Tests

DD test is unique and new addition in cloud detection literature.

- ***** DD (3.9 & 11) μm first applied to GOES-13, where no. of channels is limited.
- Functional DD(3.9 & 4) μm is further improvement for MODIS; reduces FA of 265 and CL of 4,390, and increases detection of 4, 125.

Spatial Coherence test

5x5 grid box:

Max - Cpix < 0.6 K

Problem:

more the 0.3 K/km temperature gradient will be screened out. Need improvement of this test.

Additional Cloud detection using PDSST scheme

• **TTLS** developed for 3-parameter retrieval $|\Delta y| \le 1: \lambda = (\sigma_{end-1})^2 |\Delta y| > 1: \lambda = (\sigma_{end-1}/\log(|\Delta y|))^2$

- Absence of 6.7 & 13.4 μm channel, VIIRS cloud detection is challenging.
- data coverage CEM: 20.5%, OBPG: 9.4% (QL=5), NAVO: 7.4% (QL=5)
- Reduction of RMSE from 0.6 to 0.35 K discarding 1.5% matches.
- ✤ Right panel: single channel retrieval & distance from IG is ~ 1:1

GOES-13 Time series (50 months)

- Above 5 millions of matchups (day & night composite)
- Avr. MTLS RMSE reduction 22 % (0.67 to 0.5 K).
- Avr. data coverage increased of 38 %.
- Mutually inconsistence between MTLS & CEM.

MODIS-A time series (10 months)

- PD SST suite increases Avr. data coverage from ~9% to 18% & simultaneously reduction of RMSE from 0.51 to 0.34 K.
- ***** Focus of the talk is CEM.
- As operational SST data is inconsistence, offline cSST4 & TTLS are considered.
- Except one month of TTLS, the RMSE of both are low under CEM

Summary and conclusions

- CEM is a novel and innovative Quasi-deterministic cloud detection Algorithm.
- CEM is independent of locations (Ocean), seasons and sensors.
- TTLS and MTLS can perform additional cloud detection at solution time.
- CEM is not yet fully optimized and it can be improved further.
- Although CEM performed on match ups only, the substantial amount verification data serve as a ready point for operational use.

Thank you

Maps

TTLS+CEM

