

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Importance of uncertainty estimates at Level-1 satellite data for SST CDRs retrievals; progress made within FIDUCEO

<u>Marine Desmons,</u> Jonathan Mittaz, Christopher Merchant, Owen Embury

Department of Meteorology, University of Reading,

Reading, UK

Fidelity and Uncertainty in Climate data records from Earth Observation

Overview of the project

- Funded by the Horizon 2020 Framework Programme (EC)
- A lot of partners: University of Reading, Eumetsat, University of Hamburg, DLR, NPL...
- 4-years project that started in March 2015
 - Project aims to apply metrological principles to historic EO satellite data
- Fundamental Climate Date Records (FCDRs) from AVHRR, HIRS, MW sounders, MVIRI
- Climate Data Records (CDRs) will be developed from FCDRs
 - SST, Upper Tropospheric Humidity, Aerosols, albedos
- Main dates:

April-May 2017: Preliminary FCDRS including the AVHRR

- 2019 : SST CDRs with uncertainty ensemble data

What are the aims of FIDUCEO?

- Derive methods and best practice for FCDRs (Level 1) and for CDRs(Level 2+) for a range of instruments taking a metrological approach
- Create traceable uncertainties
 - Provides evidence of all processes involved in deriving the data
 - Good quality and documented uncertainties required for Climate use
- Provide data in easy to use formats including pixel level uncertainties
- Provide cookbooks and toolkits on best practice methods

A Metrological Approach

- Metrology is the science of measurement
- Provides a framework for the assessment of the quality/ useability of the end product
 - Rigorous analysis of uncertainties
 - Traceability of uncertainties
 - ➤ Must be quantitative
 - ➤ Should detail all linkages and processes so can easily assess the data processing chain
 - Where does all the information used come from?
 - Should highlight all assumptions made
 - ➤ Enables potential problems in analysis to be highlighted/spotted
 - Provides documentary evidence for the final uncertainties

Why is it important to take a new approach to FCDR/CDR generation?

- Past history has shown that much of the satellite data used as FCDRs/CDRs developed can have significant biases/errors associated with them
 - Not good for climate studies...
 - Need to provide answers to the question
 - "To what level can I trust this data?"
 - How can we approach both satellite calibration and CDR algorithms to reduce the introduction of possible errors into the data?
 - How can we demonstrate the trustworthiness of the data?

AVHRR measurements

- Mission since 1978: one of the longest continuous global satellite records.
- On-board calibration for each scan lines:

10 obs. of on-board reference (internal calibration target) +space

AVHRR measurements

- One of the fundamental source of uncertainty is instrumental noise:
 - Error due to badly characterized calibration system
 - Thermal noise of the detector
 - Etc...
- Random component of the instrument noise can be measured from:
 - Space view measurements
 - Internal calibration target measurements
 - (Uniform scenes)

How to estimate the uncertainties?

HOWEVER it is far more complex

→ In this work we are studying the uncertainties caused by instrumental noise for the AVHRR _

Noise is different according to what we are looking: Space or Internal calibration target

■ What to expect when looking at the Earth

Temporal variability of the noise

Due to degradation over time (but not for the ICT)

AVHRR18_G,

Ch. @ 11µm

Temporal variability of the noise

Spectral variability of the noise

AVHRR10_G

Noise is much more complex than a unique value for all the channels and sensors.

Need to take this variability into account.

Consequence of the noise

AVHHR-09, channel at 3.7 μm

Stripping effect due to high noise

Temporal variability of the noise

TIROS-N, channel at 3.7 μm

Important variability, also at short scale (only for TIROS-N)

Propagation of the Level 1B uncertainty into the SST equation

SST equation for nighttime applications :

$$SST = (a + b S\theta) T37 + (c + d S\theta) (T11 - T12) + e + fS\theta + corr$$

OSI SAF, François et al., 2002

- T37, T11, T12 are the brightness temperatures at 3.7, 11 and 12 microns, respectively;
- corr is the correction term resulting from preliminary adjustment on the match-up database;
- S θ = sec(θ) -1, with θ the satellite zenith angle
- The coefficients of the algorithms have been derived from a simulated brightness temperatures

Propagation of the Level 1B uncertainty into the SST equation

SST equation for nighttime applications :

$$SST = (a + b S\theta) T37 + (c + d S\theta) (T11 - T12) + e + fS\theta + corr$$

- Uncertainty ≈0.49 *Merchant and Le Borgne, 2004*
- Different sources of uncertainty:
 - Radiometric noise
 - Retrieval algorithm
 - Calibration and forward model
 - Skin and diurnal effects.

Propagation of the Level 1B uncertainty into the SST equation

SST equation for nighttime applications :

$$SST = (a + b S\theta) T37 + (c + d S\theta) (T11 - T12) + e + fS\theta + corr$$

- Different sources of uncertainty:
 - Radiometric noise

$$\Delta SST = \sqrt{\left(\frac{\partial SST}{\partial T_{37}}\right)^2 (\Delta T_{37})^2 + \left(\frac{\partial SST}{\partial T_{11}}\right)^2 (\Delta T_{11})^2 + \left(\frac{\partial SST}{\partial T_{12}}\right)^2 (\Delta T_{12})^2}$$

Uncertainty on the SST due to radiometric noise

Instrumental ΔT for AVHRR18_G

Uncertainty ≈0.49 (Merchant & Le Borgne)

Radiometric uncertainty on SST

Monthly median of ΔT for AVHRR18_G

University of

Radiometric uncertainty on SST

Monthly median of ΔT for AVHRR07_G

Radiometric uncertainty on SST

Monthly median of ΔT for AVHRR07_G

Summary

- Important variability of the noise at Level 1B:
 - > Spectrally
 - > Temporally
 - Necessity to take this variability into account to estimate SST uncertainties
- Radiometric uncertainty of SST ranges from 0.08 to much larger
 - Instrument noise may not be the main source of uncertainty

Thank you!

