Roles of L2 SSES in a L4 production case

Mike Chin, NASA JPL / CalTech, California

- L2 Single Sensor Error Statistics ("bias" and "std") (potentially) used heavily in L4 analysis production.
- This presentation: how SSES are used/abused in a particular case of MUR SST (L4) production.

GHRSST XVI International Science Team meeting European Space Agency ESTEC, The Netherlands, 20-24 July 2015

MUR (L4) Summary

- $0.01^{\circ} \times 0.01^{\circ}$ grid (~1 km resolution) daily analysis, featuring **MODIS** (high-resolution, wide-swath) L2P data sets.
- Also include: microwave (AMSR-E, WindSAT), lower-resolution global infra-red (AVHRR-18G, -19G), ice-concentration (OSI SAF), and in-situ (iQuam) data sets.

To be included in the future: VIIRS, AMSR2, ...

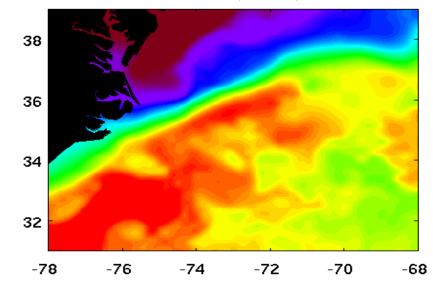
- Uses only night-time data (for bulk-temperature analysis).
- Covers Aqua satellite-period: mid-2002 to present.
- ⇒ a fairly standard daily L4 gridded SST product, maybe except for the high spatial resolution

MUR Analysis Requirements and Approach

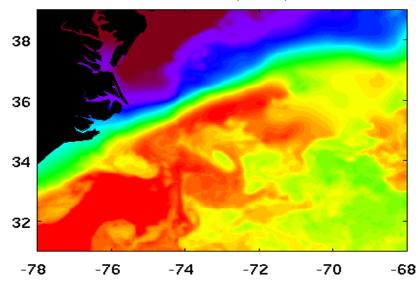
 Processing of data sets with highly variable resolutions: ~1-km (MODIS), ~10-km (AVHRR, ice), ~25-km (microwave), to even sparser (in-situ data).

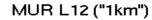

Difficulty: smaller features move faster (within a daily span).

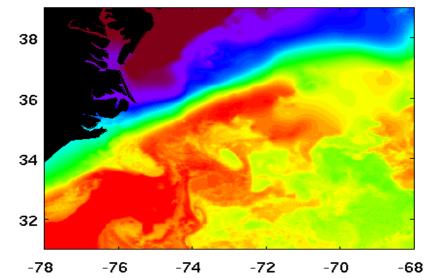
- Approach: multiple "stages" of analysis at different scales (e.g., the last paragraph, Reynolds et al. 2013).
- MUR uses *Multiresolution Analysis* (MRA; cf. wiki) for multi-scale signal decomposition using a wavelet basis:


 $T^{\text{MUR}} = \bar{T}^{(L_0)} + T'^{(L_0)} + T'^{(L_1)} + \dots + T'^{(L_{max})}$

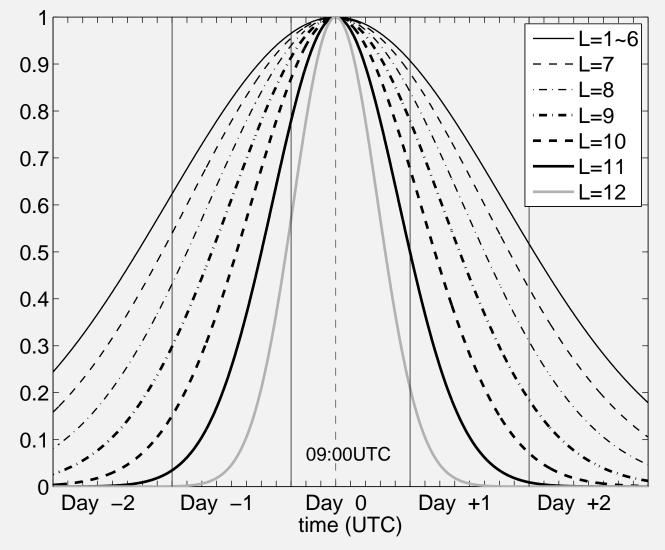
Duration (time window) of the input data is dependent on the scale/resolution (L_i) .

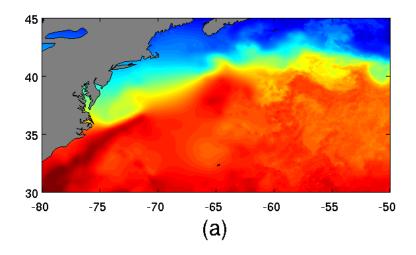

MUR Analysis Approach: Multi-scale analysis

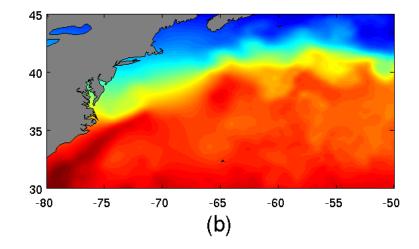


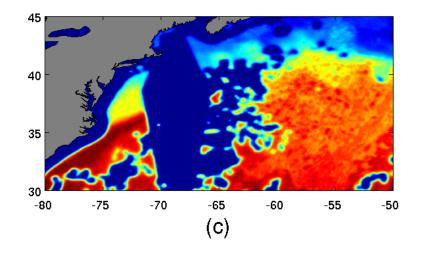

MUR L8 ("16km")

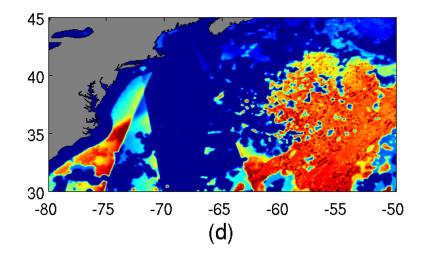
MUR L10 ("4km")






MUR Analysis Approach: Input time windows


Narrower time-windows for higher resolution analysis stages:



Bad Examples: without multi-scale analysis

Core Analysis Procedure, MUR (and others?)

- MUR analysis method uses:
 - multiple stages of scale-specific analysis.
 - a "mesh-less", continuous function (wavelet) basis (no nearest-neighbor gridding, preserves geolocations info).
- However, each stage is a *familiar* OI estimation, like this:

$$T'^{(L)} \leftarrow \min_{\mathbf{x}} \left\| \mathbf{x} - \mathbf{x}^{b} \right\|_{\mathbf{B}^{-1}}^{2} + \left\| \mathbf{y} - \mathbf{H} \mathbf{x} \right\|_{\mathbf{R}^{-1}}^{2}$$

an optimal combination of (assumed) background \mathbf{x}^b and observations \mathbf{y} based on their respective error covariance matrices \mathbf{B} and \mathbf{R} .

⇒ How MUR depends on L2P parameters (including SSES) maybe similar to how other L4 data rely on them.

Potential uses of L2P SSES (in L4 analysis)

1. Quality control

Which L2P pixels are actually used as the inputs to L4?

2. Bias corrections

- finding the target "SST" (e.g., foundation SST)
- inter-sensor bias

3. Data weights

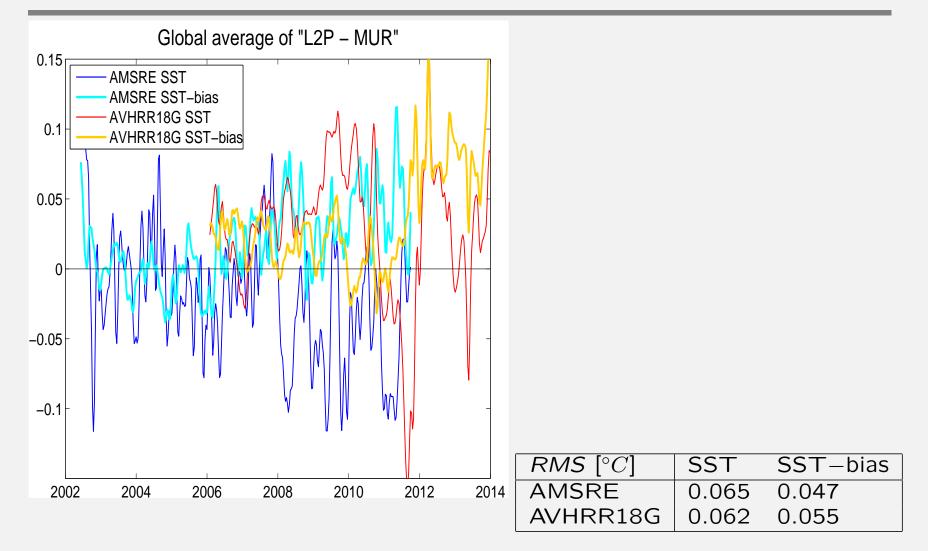
The key parameters in OI & Bayesian estimation methods.

4. Posterior error estimation

The required analysis_error field of L4.

1. Quality control in MUR

- Quality-flags are the primarily means of pixel segregation.
- Geo-location (lat,lon) is checked for inland pixels.
- Currently, MUR doesn't use a background SST field (e.g., climatology, previous day's analysis) for outlier detection.
- SSES standard_deviation is checked for large values (e.g., $> 1^{\circ}C$).
- \Rightarrow Reliance on the L2P quality flags, mostly.


2. Bias corrections in MUR

- Can SSES bias be used to determine the "bulk SST"?
 - Operating assumption:

SSES bias and standard_deviation are the mean and STD statistics of the difference between L2P and match-up data base (buoy) SSTs.

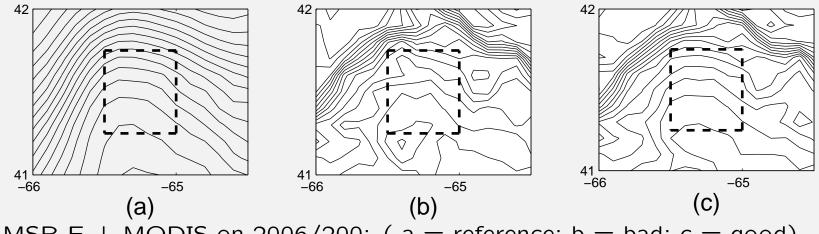
- Good assumption? (What exactly are SSES's?)
 - * How are such statistics made available for *each* pixel?
 - * What is the accuracy of the SSES bias?

2. Bias corrections in MUR

Use of SSES bias improves self consistency ... slightly.

2. Bias corrections in MUR

- SSES bias are applied for most input L2P data sets.
- MUR co-estimates bias b_s for each sensor s (with noise ϵ_s):


$$T_s^{\text{L2P}} = T^{\text{MUR}} + b_s + \epsilon_s$$

except $b_s = 0$ when s is "in situ" (for bulk temperature).

- → simultaneously attains bulk temperature and corrects for inter-sensor bias
- \Rightarrow in situ data set (iQuam) plays a key role in bias correction.

3. Data weighting in MUR

- Importance of respecting pixel-to-pixel correlations (e.g., Kaplan et al 2003; "super-obs").
- MUR assumes a constant correlation coefficient for each grid-box. → SSES variance values are discounted according to the pixel density. Example: Fig. 8 from Chin et al 2014

AMSR-E + MODIS on 2006/200: (a = reference; b = bad; c = good)

- Also, time-window weights (previous slide) are applied.
- ⇒ SSES std (variance) values are heavily altered !

4. Posterior error statistics in MUR

- Background error model (covariance matrix, variational constraints, etc) typically affects the L4's own error estimate.
 Posterior variance values can become too low (often not an ideal Bayesian scenario).
- L4 ensemble statistics can be useful,
 e.g., GMPE standard-deviation correlates well with buoy-ΔSST, Fig.5 of Martin et al 2012.
- MUR uses the latter to correct the former by scaling.
- ⇒ SSES std (variance) values must be heavily altered, again.
- MUR also needs a separate (experimental) flag to indicate the MODIS pixel locations, because posterior error doesn't locate them well.

Uses of L2P SSES in MUR L4 analysis

- 1. Quality control (which L2 pixels are actually used?) SSES std is looked at, but L2P quality flag is relied on.
- 2. **Bias corrections** (target "SST" and inter-sensor bias) SSES bias is applied, but bias is co-estimated.
- 3. **Data weights** (basis of OI & Bayesian estimation methods) SSES std is used but altered (beyond recognition).
- 4. **Posterior error statistics** (analysis_error field of L4) The altered SSES std is used, and output is scaled.

MUR's reliance on L2P quality parameters

in the order of importance/impact:

- 1. Quality flag
- 2. SSES standard deviation
- 3. SSES bias

However, *SSES bias* has a potential to play a much larger role, because it applies directly to the SST values.

Summary and Comments

- Gridding is a harsh environment for L2P SSES parameters.
 - a non-ideal Bayesian scenario
 (prior models, correlations, biases, data density, ...)
 - "bin-averaging" does NOT avoid issues (e.g., correlation)
- Still, "data products" should inherit error estimates (mostly) from the upstream data sets, i.e., L4 and L3 from L2P.
 - consider alternatives to use L2P SSES better:
 e.g., direct gridding/interpolation of SSES std values.
- Potential impacts of SSES bias on L4 seems large.
 - can reduce inter-sensor bias and reach target SST (skin/bulk).
 - What's the reference? (What's "SST-bias"?) Accuracy?
 - Definitions? Documentations?
- *Quality flag(s)* could be included in SSES discussions.