

ESA Climate Change Initiative Phase-II

Sea Surface Temperature (SST)

www.esa-sst-cci.org

SST_CCI validation

Gary Corlett

Oceanography Centre

Introduction

- A key aim of the ESA SST_CCI project is to provide a pixel level standard uncertainty for all products
- A further aim is to validate these product uncertainties using independent measurements
- We hope (expect) users will use the uncertainties in the products and not make their own assessment
- In this presentation we shall look at how we have validated the ESA SST_CCI products and their uncertainties

Some terms

 Validation: The process of assessing by independent means the quality of the data products (the results) derived from the system outputs.

Classes of validation:

- <u>Independent reference data</u>: Data not used in algorithm training, test, selection or in product generation
- <u>Pseudo-independent reference data</u>: Data used in algorithm training, test, selection but not in product generation.

Types of validation:

- <u>Type 1 'Point'</u>: Single pixel comparisons
- <u>Type 2 'Grid'</u>: e.g. comparisons to HadSST3
- <u>Type 3 'Functional'</u>: Knowledge transfer to areas where we have no reference measurements

Understanding the problem (1)

SST CCI Phase-II - AR2

National **Oceanography Centre** NATURAL ENVIRONMENT RESEARCH COUNCIL

Understanding the problem (2)

- Assessment of uncertainty of satellite measurements involves comparison to a reference dataset
 - Create dataset of match-up coincidences within predefined spatial and temporal limits
- The bias and standard deviation calculated from such a comparison do not provide the uncertainty of each dataset individually, but are simply the mean bias and combined uncertainty of a two dataset comparison.
- Consequently, the resulting statistics are often dominated by real changes in the SST that can occur within the predefined spatial and temporal limits.

Validation uncertainty budget

$$\sigma_{Total} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 + \sigma_5^2}$$

- Satellite (σ_1)
 - Varies pixel by pixel
- Reference (σ_2)
 - Generally unknown; Estimate of O(0.1 K) for GTMBA moorings and radiometers; O(0.2 K) for drifters; negligible for Argo
- Geophysical: spatial surface (σ_3)
 - Systematic for single match-up; pseudo-random for large dataset
 - Can be reduced through pixel averaging (e.g. sample 11 by 11 instead of 1 by 1)
 - Includes uncertainty in geolocation (may be systematic even for large numbers)
- Geophysical: spatial depth (σ_4)
 - Systematic for single match-up for different depths; pseudo-random for large dataset at different depths (with diurnal & skin model)
- Geophysical: temporal (σ_5)
 - Systematic for single match-up; may be reduced for large dataset (if match-up window small enough)
 - Can be reduced with diurnal & skin model

SST CCI Phase-II - AR2

6

Reference data for validation (Phase I)

Data type	Year	Coverage	SST*	Uncertainty
Ship-borne IR radiometers	1998 -	Repeated tracks in the Caribbean Sea, North Atlantic Ocean, North Pacific Ocean, and the Bay of Biscay; episodic deployments elsewhere in the world's oceans.	SSTskin	0.10 K
Argo floats	2000 -	Global [#] from ~ 2004 onwards.	SST-5m	0.05 K
GTMBA	1979 -	Tropical Pacific Ocean array completed in 1998; tropical Atlantic and Indian Ocean arrays installed later.	SST-1m	0.10 K
Drifting buoys	1991 -	Global [#] from ~ 2000 onwards.	SST-20cm	0.20 K

SST CCI Phase-II - AR2

eXic

Adjusting for diurnal variability

SST CCI Phase-II - AR2

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCI

PVIR automation

- Modular validation processing
 - In situ data collation (HadIOD drifters and Argo; plus GTMBA; plus radiometers)
 - Match-up generation (MMD files)
 - SST_CCI product extraction, or process directly on MMD files •
 - Base file generation contains all variables except for satellite data
 - Includes DV adjustments (http://sstcci2.blogspot.com/2014/09/what-differencesto-use-in-validation.html)
 - Combine with satellite data; rapid for direct processing •
 - Basic image and statistical analysis
- Automatic document generation using python-docx
 - One for main body of PVIR
 - One for generating an appendix (one per reference data type)

PVIR appendices – examples

SST CCI Phase-II - AR2

Oceanography Centre

ATSR and AVHRR results "EXP1.2"

ESA SST_CCI Version "EXP1.2" Stability Assessment

Only applicable to region of TAO/TRITON tropical moorings

Need to sample the full validation measurement space

- Satellite SSTs have many sources of error that cannot be easily corrected
- Calculate an uncertainty model to represent these sources of error
 - See Bulgin et al. 2016, <u>http://dx.doi.org/10.1016/j.rse.2016.02.022</u>
- Need to make sure that all possible error sources are validated
 - Dependence
 - Latitude, wind speed, TCWV, SZA, time difference, date, across-track, TCC, Local Solar Time, probability of clear sky, sensitivity, chi²
 - For all retrieval combinations; both day and night
 - Accounting for DV
 - Spatial and temporal variability
 - Histograms
 - Look for non-Gaussian behaviour
 - Uncertainties
 - Underestimated or overestimated

How to validate uncertainty?

Example using drifters

Theoretical distribution:

- Use mean uncertainty of 0.2 K for σ₂
- Use large number of match-ups, area averaging and diurnal & skin model to randomise σ_3 and σ_4
- Use diurnal & skin model to reduce σ₅
- Uncertainty budget reduces to:

$$S_{sat-ref} = \sqrt{S_{sat}^2 + S_{ref}^2}$$

Results: AVHRR L2P

SST CCI Phase-II - AR2

Oceanography Centre

Results: Analysis L4

ESA SST_CCI analysis SST_{0.2m} versus drifters

SST CCI Phase-II - AR2

* *

Summary

- ESA SST_CCI products contain uncertainties with each SST
- These SST and their uncertainties can be validated using *independent* reference data
- Results show uncertainties in V1.0 data are:
 - Good for AVHRR L2P and ATSR L3U night time
 - Less discriminating and over estimated for day time
 - Very realistic and discriminating for analysis L4

