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Diurnal warming description

Observed diurnal warming

GMAO diurnal model

Conclusions

Observations and 

models of oceanic 

diurnal warming





Upper Ocean Thermal Structure

Foundation SST





Models of DW

• Empirical

– Variable inputs

– Derived from data

• Physical

– GOTM

• 1D with assumed profile or upper ocean 

structure

– Takaya2010 / ZB2005





Zeng and Beljaars et al 2005

• Specifically derived for use in NWP, coupled models.  

• Developed from 1D heat transfer, prognostic 

equations predict diurnal variation within cool skin 

and diurnal warm layer 

• Uses Monin-Obukhov vertical mixing 

parameterization for wind-driven turbulent diffusion

• Assumes diurnal warming normally negligible below 

2-4 m, sets fixed diurnal warm layer depth of 3m

• Conserves Heat





Takaya et al 2010

• Refined ZB05

– Changed stability function in wind-driven 

turbulent diffusion coefficient

– Inclusion of mixing effects related to 

Langmuir circulation during stable 

conditions



Zeng and Beljaars (2005) scheme
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Slide from : 
https://www.ghrsst.org/files/download.php?m=documents&f=
120306053317-BrunkeGHRSSTTWP2012.pptx

Residual warm layer after sunset:
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NWP diurnal model implementation

• ECMWF, Navy, & NASA coupled models now 

include ZB05/T10 heat conserving prognostic 

model
– ECMWF - Diagnostics for the medium-range forecast 

interval (0–16 d lead time) indicated that the inclusion of the 

KPP model improved SST forecast skill at the 10 d lead time 

and beyond, as well as MJO propagation and Indian 

monsoon rainfall (Takaya et al., 2010)

– Navy - Statistically significant gains in forecast performance 

are seen for all the variables that are analyzed (McLay et al, 

2012)





GEOS-5

• The GEOS-5 AOGCM is designed to simulate climate variability on a wide range 

of time scales, from synoptic time scales to multi-century climate change, and 

have been tested in coupled simulations and data assimilation mode.

• The main components of the GEOS-5 AOGCM (Fig. 1) are the atmospheric 

model, the catchment land surface model, both developed by the GMAO 

(GEOS-5 AGCM, Rienecker et al. 2008), and MOM4, the ocean model 

developed by the Geophysical Fluid Dynamics Laboratory (Griffies et al. 2005). 

• These two components exchange fluxes of momentum, heat and fresh 

water through a "skin layer" interface. The skin layer includes 

parameterization of the diurnal cycle and a sea ice model (LANL CICE, 

Hunke and Lipscomb 2008). 

• All components are coupled together using the Earth System Modeling 

Framework (ESMF) interface. Here we describe the results from a single multi-

decade simulation conducted in the latest tuning phase of the AOGCM.





GMAO Warm layer

• Takaya et al (2010) & Zeng & Beljaars (2005)

• Interface layer depth = 2m

• ᶹs= 0.3 as in T2011 & ZB05

• Foundation SST = GHRSST OSTIA Bulk SST 

(PO.DAAC / NCEI NODC)

• Includes ocean color climatology

– Data assimilated initial conditions have a better 

forecast with the ocean color DW, particularly in the 

tropics and also extratropics (southern oceans).

- Physically it make sense that shortwave absorption 

should depend on turbidity.









Monthly ave warming





Compare to SEVIRI

• SEVIRI 15 minute 4km data

• Averaged to GEOS-5 hourly grid

• Night time data used for foundation SST

• DW = SEVIRI – Foundation SST





GEOS-5 model vs SEVIRI

April 2012

Amplitude too 

large at low 

wind speeds





Local Time

ZB cools too fast 

in afternoon

(others found 

same result, 

known issue)





Summary of GEOS-5

• Too large amplitude

• Afternoon cools too rapidly

• Work on improved wind speed 

dependence by introducing a wind 

speed dependent empirical depth 

dependence

• Examine ocean color





GOTM modeling

• 1D turbulence model (GOTM)

• Radiative transfer model (Paulson & 

Simplon, 1977), modified to split the 

visible into the red and the ‘rest’

• WASPARC (WArm SPot Dataset for the 

ARCtic, Météo-France)





GOTM warming wind dependence

GOTM run for 

constant wind 

speed (1-10m/s)

Depth of warm 

layer has almost 

linear 

dependence on 

wind speed
GOTM model results for day 8 diurnal peak, different wind speeds 

shown by color.  Depth of warm layer shown in interior plot.





Impact of phytoplankton on DW

• Surface chlorophyll-a concentration well 

measured by multiple satellites 

• Phytoplankton distribution nonlinear with 

depth (dependent on nitracline)

• Chlorophyll-a reflects and absorbs 

shortwave radiation and can increase 

diurnal warming stratification





Absorption
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Paulson&Simpson, 1977

Damping term due to bioturbidity

A and absorption coefficients depend on water type

Constant partitioning visible light in spectrum

ᶯ, k1, k2 calculated suing Sathyendranath&Platt 1988





Impact of Chl-a at low winds





Impact of Chl-a at high winds





GOTM results

• Diurnal layer depth varies ~linearly for 

increasing wind speeds

• Chlorophyll-a concentration impacts DW 

more at low-medium wind speeds





Impact of depth on amplitude

3m depth 5m depth





Depth dependent on wind





Depth dependent on wind





Conclusions

• Changing depth shifts warming later in 

day

• Changing shape of warming profile (v) 

sensible, but needs to be carefully done

• Decrease in warming still not correct

• Working to implement GOTM model 

derived (v) profile with changes in depth 

simultaneously


