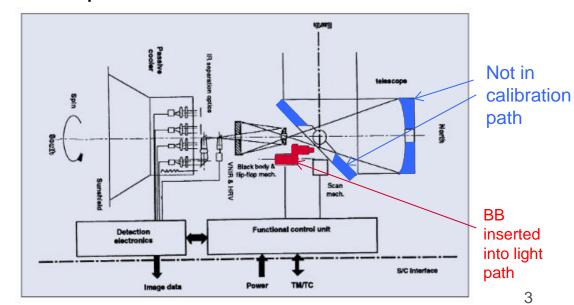


THE CALIBRATION OF GEOSTATIONARY SATELLITES

Jonathan Mittaz
University of Reading

INTRODUCTION

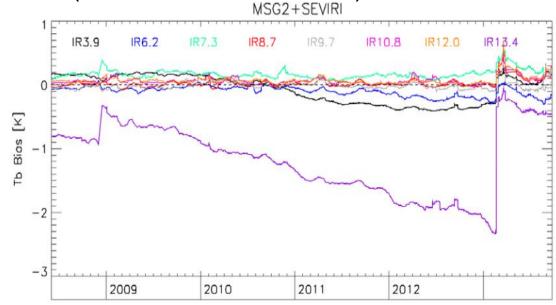
- Accurate SSTs require accurate IR radiances/BTs
- Geostationary satellites have specific calibration issues that can impact accuracy
 - 3-axis stabilised platforms can have thermal instrumental effects due to large instrument temperature variations
 - Spinning instruments (e.g. SEVIRI) can have compromised calibration systems
- Plus other 'normal' calibration issues (SRF problems, straylight issues, solar contamination etc.)


SEVIRI ISSUES (1)

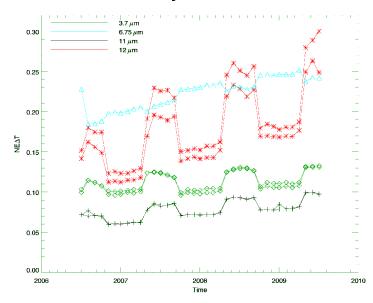
Due to spinning nature calibration path does not include all of Earth

viewing light path

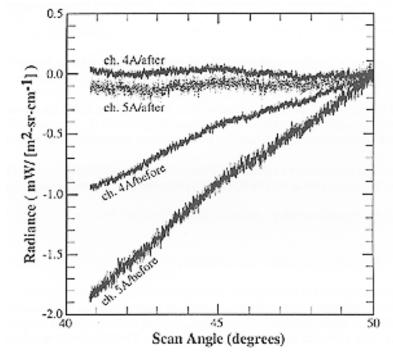
 Extra radiance outside calibration path has to be modeled

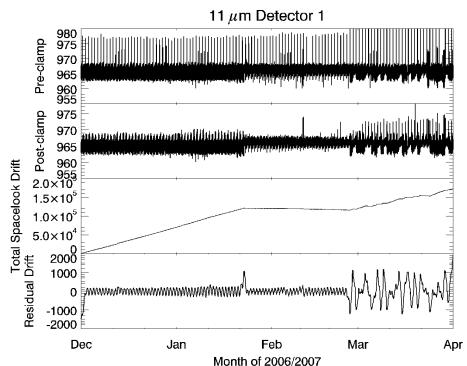

- Possible source of error
 - Bear in mind for very accurate work...

SEVIRI ISSUES (2)


- Ice buildup on 13.4µm channel (Hewison & Müller 2013)
- Based on GSICS analysis
 - Compared to IASI
- Clearly see decontamination events
- Correction available for GSICS period
 - for climate may need to correct for earlier sensors

GOES ISSUES (1)


- Requires two detector temperatures around a year
- Impacts the Ne∆T
 - Seasonal variation
- Long term time variation
- Should not assume constant NeΔT…

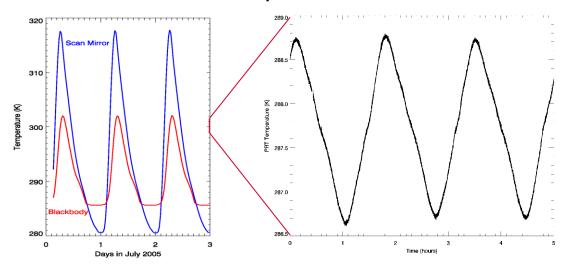

GOES (2) - MIRROR EMISSIVITY CORRECTION

- Paddle mirror means different incident angles for different scan locations
- Change in mirror emissivity
 - Variation in mirror radiance
- Effect up to a few Kelvin across scan
- Correction based on Space view scans

GOES (3) — SEASONAL CALIBRATION PROBLEMS

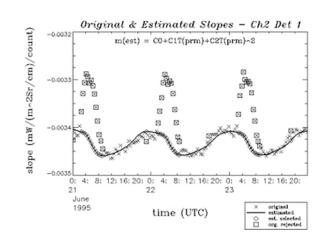
Eclipse season

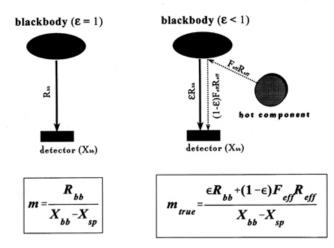
Use accumulated space counts as a proxy for the instrument self-emission radiance


Instrument well behaved until eclipse season (can see diurnal self emission variations)

When eclipse season starts instrument seems to go haywire...

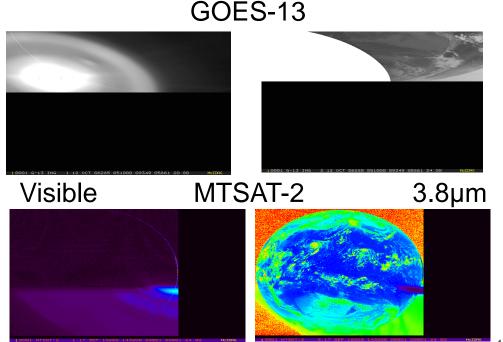
GOES ISSUES (4) — INSTRUMENT TEMPERATURES


- 3-axis stabilized
 - Large thermal variations compared to LEO satellites



THE MIDNIGHT BLACKBODY CALIBRATION CORRECTION (MBCC)

 Corruption of the calibration system around the time of local midnight – stray light from a heated part of the instrument (thought to be the sun shield) reflected off BB

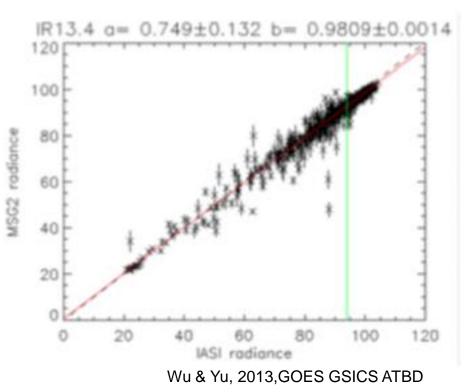


SOLAR CONTAMINATION

- Solar contamination in the image plane seen close to local midnight
 - Worst can be masked out
 - But still can have residual effects...

Scattered light in MTSAT-2

Occurs during eclipse season around local midnight

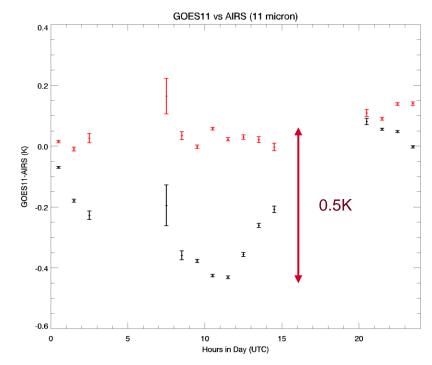

CALIBRATION FIXES

- There are a number of different approaches to fix GEO calibration biases/error
 - GSICS (Global Space-based Inter-Calibration System)
 - Provides scene temperature dependent bias based on a linear model
 - Modification to calibration algorithms and/or recalibration
 - Updated MBCC algorithm
 - Model solar contamination
 - Doesn't work very well...

GSICS + GOES

- Provides a correction to BTs
- Detailed Uncertainty analysis of matchup process applied (e.g. Hewison 2013)
- Ordinary Least Squares fit
 - This may introduce biases due to not taking into account uncertainties in both X & Y ordinates

GSICS CORRECTIONS FOR GOES


- Nightime only data used for correction
- Data averaged over 30 days
 - Midnight effect not corrected for but added to uncertainty (Yu & Wu, 2012, "GSICS GOES-IASI Inter-Calibration Uncertainty Evaluation")

Systematic Error	Ch2(3.9µm)	Ch3(6.5µm)	Ch4(10.7µm)	Ch6(13.3µm)	unit
Radiance bias at standard scenes	0.0047	0.0802	1.7695	1.8216	mW/m ² /Sr/cm ⁻¹
Tb bias at standard scenes	-0.1928	-0.4455	-1.168	-1.2775	K

SOLUTION — UPDATE MBCC ALGORITHM

- Can correct by updating MBCC
 - Change algorithm on th basis of physical model
- Initial tests indicate can significantly improve calibration
- BUT
 - Currently only theoretical
 - Not included in operations

CONCLUSION

- Calibration of Geostationary imagers is complex
 - Especially for historic 3-axis stabilized
- Many corrections need to be applied that will all have errors/uncertainties associated with them
- GSICS will help with some of them but
 - Not Midnight BB effects
 - Will smooth transition to eclipse seasons
 - No correction across scan line
- For climate applications recommend thorough calibration algorithm/ uncertainty analysis