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1 Introduction 2 Data & Method

Major data sets (temporal coverage for five years: Jan. 2010 — Dec. 2014):

= A better understanding of SST diurnal variation (DV) events is essential to better represent the air-sea

Interaction in weather/climate models (e.g. Clayson and Bogdanoff, [2013]). = Satellite SST data: Bureau of Meteorology produced daily, 0.02° resolution, version 2 (“fv02”) High-Resolution Picture Transmission
(HRPT) Advanced Very High Resolution Radiometer (AVHRR) SSTs from NOAA-19, as a contribution to the Integrated Marine

= Tropical Warm Pool (TWP, 90°E-170°E, 25°S-15°N) region iIs considered to be an excellent area to conduct _ _ _ _ _ _ .
Observing System (IMOS; www.imos.org.au); SST field: experimental hybrid SST_Day Night (Griffin et al. [2016]).

DV studies because of its: (1) globally highest annual average SST, (2) calm winds, (3) strong solar

shortwave insolation (SSI), and (4) frequent, large-amplitude DV events. = Drifting buoy SST data: the In-situ SST Quality Monitor (iQuam; www.star.nesdis.noaa.gov/sod/sst/iquam/).

= Hourly wind speed, SSI, and latent heat flux (LH) data: the Bureau’s hourly Australian Community Climate and Earth System Simulator-

= Detailed description of the SST DV seasonal patterns using long-term satellite observations is needed iIn _ _ _ _
Regional (ACCESS-R) 24-hour forecasts (Puri et al., [2013]). Spatial resolution: 0.375° (0.11°) before (after) 17t Apr. 2013.

order to better facilitate DV modelling and to better understand DV features over the TWP region.
Quality control and Method:

= Besides, validation of the new satellite SST product produced by the Bureau of Meteorology is considered _ _ _
=  Only the highest quality level AVHRR SSTs (QL=5) and buoy SSTs (QL=5) are retained;

necessary before the SST data can be used with confidence in DV studies. In-situ validation against drifting
= SST DV amplitude (dSST) = local daytime SST (~14 local solar time, LST) — local night-time SST (~2 LST).

easonal Patterns of SST DV Events

buoy SST data is conducted.
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6 Conclusions
=  The Bureau produced fv02 IMOS HRPT AVHRR SST (experimental hybrid SST Day_Night field) from NOAA-19 are of good quality and are suitable for SST DV studies.

=  The double-peak seasonal pattern is observed for most of the study domain with maximum DV events found in Feb — Mar and Oct — Nov and minimum DV events in Jun.

= Sensitivity tests of DV amplitudes to morning and early afternoon (7-14 LST) wind speeds indicates the need of combining daily average winds and the morning winds together in a DV model that only estimates the daily maximum

dSST, especially under the conditions when the daily average wind speed is low-middle (1 mst <WS24 < 4 ms?).
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