Sentinel-3 SLSTR L1 and Marine L2 Products

Igor Tomažić⁽¹⁾, Anne O'Carroll⁽¹⁾, Prasanjit Dash⁽¹⁾, Francois Montagner⁽¹⁾, Vincenzo Santacesaria⁽¹⁾,

Ifremer

Tim Nightingale⁽²⁾, Jean-Francois Piollé⁽³⁾, Craig Donlon⁽⁴⁾, Philippe Goryl⁽⁵⁾ (1)EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany, (2)RAL Space, Rutherford Appleton Laboratory, Harwell Oxford (3) IFREMER, 38 Rue du Port Blanc, 35800 Dinard, France (4) ESA/ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands

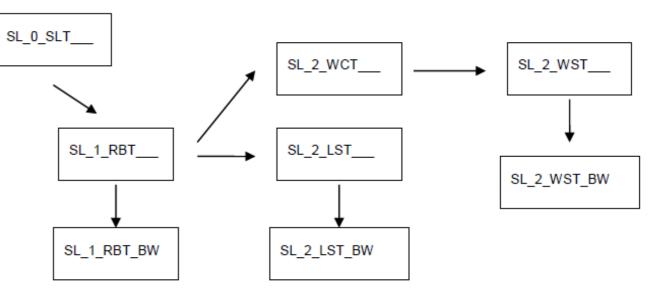
(5) ESA/ESRIN, Frascati, Italy

Introduction

EUMETSAT

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is contributing to the overall Sentinel-3 Mission Performance Activities in Commissioning (E1) and Routine Operations (E2) phases.

80

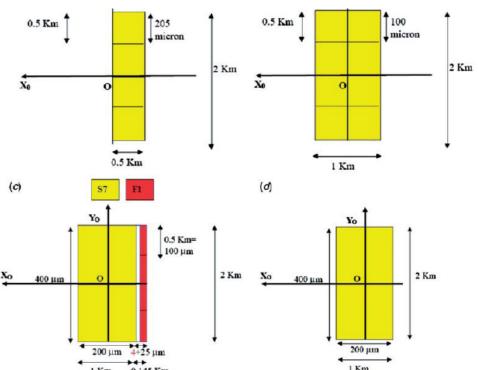

We are giving an overview of Sea and Land Surface Temperature Radiometer (SLSTR) L1 and marine L2 products. SLSTR set of products encompasses two user products, SLSTR L1B (SL_1_RBT____) and SLSTR L2P (SL_2_WST____) and one internal product (SL_2_WCT____) aimed for internal analysis and cal/val activities. The most complex of all Sentinel-3 products is SL_1_RBT____; that contains five different spatial resolution grids: 1 km, 500 m (A, B and TDI), tie point grid and two views: nadir, oblique and agnostic definition, spanning in total 111 files and almost 900 variables. On the opposite side is SL_2_WST____, the "simplest" sea surface temperature (SST) product, containing only two files and about 20 variables conforming to GHRSST (GDS2) specification. Finally, internal SLSTR L2 product (SL_2_WCT___) contains 20 files and about 100 variables associated with different SST algorithms and annotation data files.

SLSTR L1/L2 products

User Product Type	Number of Files	Number of MDFs	Number of ADFs	Number of variables
SL_1_RBT	111	34	76	~900
SL_2_WST	2	1	0	20
SL_2_WCT	20	5	15	~100
SL_2_LST	13	2	10	

•MDF – measurement data file •ADF – annotation data file

SL_L1_RBT	SL_2_WCT SL_2_WST
Measuremen	t data files
S[123]_radiance_an/ao S[456]_radiance_an/ao/bn/bo/cn/co S[789]_BT_in/io F[12]_BT_in/io	N2_SST_in, L2P N3R_SST_in, N3_SST_in D2_SST_io, D3_SST_io
Annotation	data files
S1/S2/S3_quality_an/ao S4/S5/S6_quality_an/ao/bn/bo/cn/co S7/S8/S9/F1/F2_quality_in/io indices_an/ao/bn/bo/cn/co/in/io cartesian_an/ao/bn/bo/cn/co/in/io/tx	indices_in/io cartesian_in/io/tx
flags_an/ao/bn/bo/cn/co/in/io	flags_in/io
geodetics_an/ao/bn/bo/cn/co/in/io/tx	geodetic_in/io/tx
time_an/bn/cn/in	time_in
geometry_tn/to	geometry_tn/to
met_tx Viscal	met_tx
Total: 78 (112) = 22 (34) MDF + 54 (76) ADF + mfst+ report	Total: 22 =Total: 3=5 MDF + 15 ADF +1 MDF + mfstmfst+report+ report
Different grids: <g> 'i'=1 km Thermal IR; 'a'=500 m A stripe grid; 'b'=500 m B stripe grid; 'c'=500 m TDI grid; 'a'=500 m TDI grid;</g>	que


RAL

European

Email: igor.tomazic@eumetsat.int

Commission

)ernicus

Sentinel-3 SAFE

• SAFE specific to Sentinel-3 and to SLSTR/OLCI/SRAL

SAFE (Standard Archive Format for Europe)

- •Desigined to act as a common format for archiving and conveying data within Europe EO archiving capabilities •Designed to be compliant with Open Archival Information System (OAIS)
- Instance of XML Formatted Data Units (XFDU) • Restricts the XFDU specifications for specific utilization in the EO domain

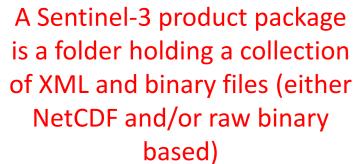
xfdu

sentinel safe

•Use of XFDU (CCSDS 661.0-B-1, Blue Book, 09/2008)

systems •XML formatted data unit (XFDU) structure and construction rules -

XFDU (XML formatted data unit)


defines how the packaging of data and metadata, including software, can be put into a single package (e.g. file or message) in order to facilitate information transfer and archiving.

•Defined in ISO 13527:2010: Space data and information transfer

•CCSDS (Consultative Committee for Space Data Systems) recommended XFDU as a standard for the packaging of data and metadata

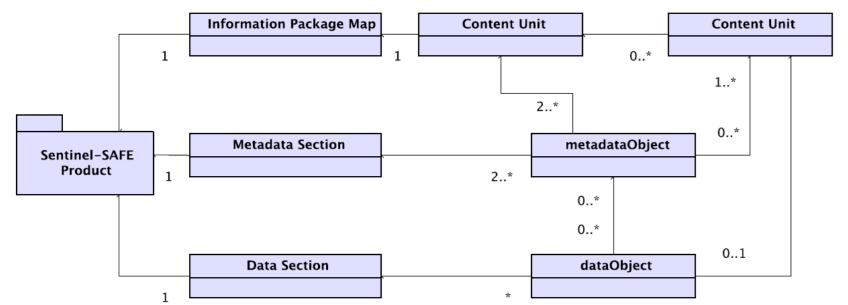
> XML file containing the package metadata (e.g. sensor name, sensing start/stop, etc.) and providing as well the hierarchic structure of the product.

netCDF4** file(s) containing data derived from measurements (also called geophysical product or scientific data).

Product

Measurement

Data


representation

Schema*

netCDF4** file(s) containing data that have not been derived from instrument measurements (e.g. geo-location, meteorological data, etc.); such nformation are applicable to multiple Measurements Data Files of the same package.

XML file(s) containing the schema of the Measurement/annotation data

Manifest file

The Information Package Map contains the logical view of the package.

The Metadata Section records all of the metadata for all items in the package. Primary (common) and Secondary (specific to instrument/level) metadata

L_1_RBT_____SAFE directory content SL_2_WCT____ SAFE directory content esian_io.nc flags_io.nc esian_tx.nc geodetic_in.nc indices_in.nc N3_SST_in.nc geodetic_io.nc indices_io.nc time_in.nc geodetic tx.nc met tx.nc SL_2_WST____ SAFE directory content 2P.nc xfdumanīfest.xml

Туре:	Manifest	Time stamps file (rows) - contains	Radiances/BT s (band, grid,	TP geodetic (Ion, lat)
		both nadir + oblique	view)	
		and i, a, b, c		TP cartesian
		Quality annotation	Flags (cloud, pointing,	(x,y)
		(detectors,	confidence,	TP geometry
		integrators, rows) (band, view, grid)	bayes)	(sataz, satzen, solaz, solzen,
		(band, view, grid)	Geodetic (lon,	satpath,
		VISCAL (integrators,	lat, elevation)	solpath)
		swir_detectors,	Indices	TP meteo
		visible detectors, views)	(detector,	data (cloud,
			pixel, scan)	wind, sst,
				tcwv,)
			Cartesian (x,y)	
Format:	XML	NetCDF 4		
Resolution:		Mixed	Image grid (pixels + orphans)	Tie point grid

Instrument \rightarrow image grid

Orphan container

't'=tie point grid (16 km)

• Procedure remaps the measured nadir and along-track instrument pixels from their positions on the curved instrument scans to a uniform grid of points in the common quasi-Cartesian co-ordinate system.

The Data Object Section contains all the physical information needed to get the location of each file composing the package.

Sentinel-3 filename convention

MMM_SS_L_TTTTTT_ <DATA_START>_<DATA_STOP>_<CREATION_TIME>_<instance_ID>_GGG_<classID>.<ext>

MMM – mission ID: **S3A** = Sentinel- 3A, **S3B** = Sentinel-3B, **S3**_ = both Sentinel 3A and 3B

SS - data source: OL = OLCI, SL = SLSTR, SR = SRAL, DO = DORIS, MW = MWR, GN = GNSS, SY = Instruments Synergy, TM = telemetry data (e.g. HKTM, navigation, attitude, time), AX = for multi instrument auxiliary data

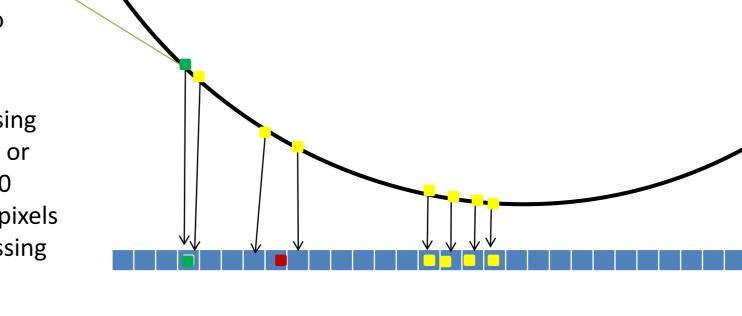
L - Processing level: "0" for Level-0, "1" for Level-1, "2" for Level-2

TTTTTT - Data Type ID: (EFR___, SLT___, RBT___, WST___, WCT___, ...) : suffix "AX " in the last 2 digits indicates an auxiliary data, suffix "BW" indicates a browse product.

Data Start time, stop time and creation time: YYYYMMDDTHHMMSS	Duration		
Instance_ID: 17 chars: STRIPE or FRAME or TILE	"DDDD" = 4 digits; orbit duration: Sensing data time interval in seconds.		
STRIPE: DDDD_CCC_LLL	Cycle		
FRAME: DDDD_CCC_LLL_FFFF	"CCC" = 3 digits; cycle number at the start sensing time of the product		
TILE:	Frame along track coordinate		
tile covering the whole globe: "GLOBAL"	"FFFF"= four digits; elapsed time in seconds from the ascending node		
tile cut according to specific geographical criteria: tttttttttttttttttttt	indicating the frame start time.		
GGG - Product Generating Centre: 'LN1', 'LN2', 'MAR',	Tile identifier "ttttttttttttttt"= 17 characters, either letters or digits or underscores "_ or any combination of them. It identifies the geographical area covered by the tile. There are two cases: 1) tile severe a pre-defined area of interact (e.g. AEDICA		
<classid>: P_XX_NNN where:</classid>			
P – platform: O for operational, F for reference, D for development,			
R for reprocessing or underscore "_" if not relevant.			
XX - timeliness: NR for NRT, ST for STC, NT for NTC,	 tile covers a pre-defined area of interest. (e.g. AFRICA tile covers an area according to a regular meshed predefined glob 		
NNN – baseline collection	grid (e.g. TILE_ID_001)		
<ext>: extension: SEN3</ext>			

_20160523T094210_20160523T094510_20160523T113538_0179_004_250_2340_MAR_O_NR_001.SEN3 S3A SL 1 RBT S3A_SL_1_RBT____20160531T225635_20160531T225935_20160601T010401_0179_004_372_1980_MAR_F_NR_001.SEN3 S3A_SL_1_RBT____20160523T094210_20160523T094510_20160525T022953_0179_004_250_2340_LN2_O_NT_001.SEN3 S3A_SL_2_WST____20160422T032431_20160422T032931_20160423T141910_0299_003_189_ __MAR_O_NR_001.SEN3 S3A_SL_2_WCT____20160520T082344_20160520T082644_20160520T100158_0179_004_206_ MAR O NR 001.SEN3

SLSTR SAFE readers


Sentinel Application Platform (SNAP)

S3A_SL_1_RBT20160602T085719_201	60602T090019_20160602T103940_0179_005_007_3240_MAR_O_NR_001_1km - [C:\Users\tomazic\Projects_DATA\S3A\JPF_INTERCOMPARSION\SLSTR\fromEUM\fro	omOPE\S3A_SL_1_RBT20160602T085719_20160602T090019_20160602T103 👝 🚱 🗾
ile <u>E</u> dit <u>V</u> iew Analysis Layer Vector R	aster Optical Radar <u>I</u> ools <u>W</u> indow <u>H</u> elp	Q • Search (Ctrl+I)
= 5 8 to 4 se	● 縲鰀 ≥ < < ↓ ↓ ♀ ■ ● ● ■ ■ ■ ■	
roduct Explorer 📽 Pixel Info	🔲 🔲 (1) SS_BT_in 🗶	
Bands		

- Duplicate pixel During the regriding process, if the pixel is already filled, set image pixel as well as orphan one to duplicate
- Cosmetic pixels Pixels filled with cosmetic value, where they are missing (either from the re-gridding process or from missing or invalid data in the LO product). It uses primarily adjacent pixels in the along track direction, or if missing in the across track one.

•It uses a nearest neighbor method and retains pixels that are not used (i.e. orphan pixels)

•The order in which orphan pixel are stored does not matter associated indices are saved in the image grid of each orphan pixel.

SSP(row L)

SSP(S_{ston})

S_{max}^{obl} (row L)

image grid

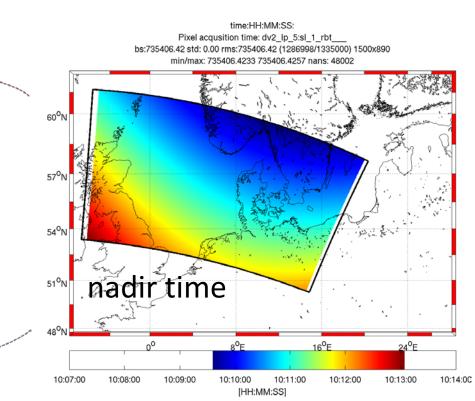
image grid

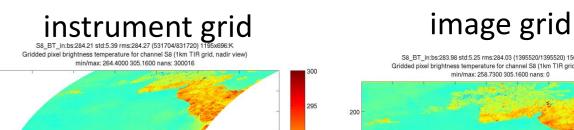
instrument

instrument

 measurements from the detectors are interleaved in a quasi-random fashion, determined by effect of the satellite orbit and the surface topology on the L1b regridding process.

SLSTR calculating time of every pixel


T_{init} = Nadir/Oblique_Minimal_ts_i(row) S_{init} = Nadir/Oblique_First_scan_i(row) SCANSYNC = Scan period (300 ms) PIXSYNC i = Pixel period (80 μ s) SSP = sub satellite point s_{ii} = indices scan (row, col) L1 granule p_{ii} = indices pixel (row, col) time(row, col)=T_{init}+(s_{ii}-S_{init})*SCANSYNC+p_{ii}*PIXSYNC_i


SLSTR image & instrument grid

- all parameters indexed on image grid – continuity

requirement

- remapping from instrument curved scans to uniform image grid in quasi-Cartesian system done using nearest neighbor method with retaining pixels that are not used (i.e. orphans) -remapping keeps original pixel positions (nearest method) therefore image grid does not look so regular for higher satza (oblique view and nadir swath edge – see Figure) -using image and orphan pixels, and information about scans, pixels, detectors and cosmetic fill pixels it is possible to retrieve instrument grid: a) for each detector and for every scan line retrieve corresponding true (not cosmetic) image and orphan pixel indices b) get corresponding scan/pixel and detector values (these become indices in instrument grid) c) use retrieved image and orphan indices to convert parameter on image grid to instrument grid

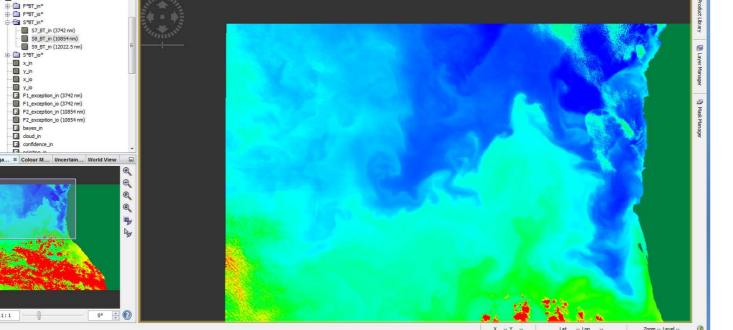
Python

Cerbere: "free and open source python modules for the reading, interpretation, and writing of (primarly ocean) geophysical data." •https://git.cersat.fr/cerbere/cerbere Felyx core component from cerbere.mapper.safeslfile import SAFESLFile fname ='S3A_SL_2_WCT___....SEN3'

- fd = SAFESLFile(url=fname) swath.load(fd)
- lats = swath.get_lat()
- lons = swath.get_lon()
- times = swath.get_times()

Matlab/Octave

- SL_1/2 and OL_1/2 product reader (available on demand)
- selective reading based on band, data type, grid, view
- unpacking flags
- parsing S3 filename, manifest
- output in structure (M/O)
- available on demand (internal development)
- s3=s3Read(fn_s3_safe, bands, datas, grids, views,
- 'flags', { {FILENAME1, {{VARNAME1, {FLAGNAME1, FLAGNAME2, ..}}}}} 'band_flags', {EXCEPTION_FLAGS})
- e.g.
- s3=s3Read('S3_SL_1_RBT___...', {'S7', 'S8', 'S9'}, {'BT', 'geodetic', 'flags'}, {'i'}, {'n', 'o'}); s3=s3Read('S3_SL_2_WST____..', {}, {'L2P'},{},{}); s3=s3Read('S3_SL_2_WCT____...', {},{},{},{}) - read all from product


References

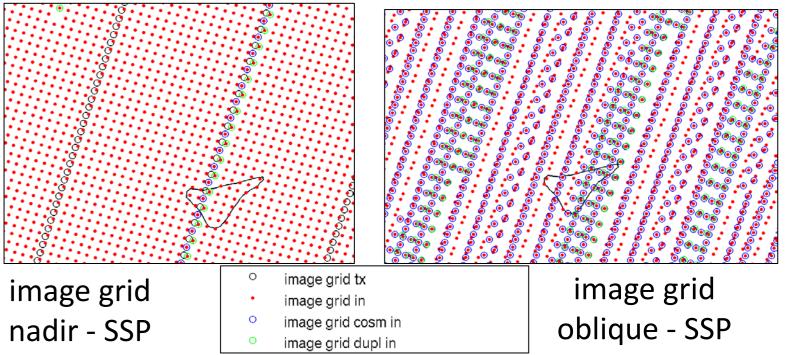
SLSTR Level 1 & Level 2 Instrument Products Data Format Specification , S3IPF.PDS.005 , 1.11, 2015

Acknowledgements

We would like to acknowledge The European Commission Copernicus Programme; The European Space Agency; Scientists and Industry throughout Europe. Special thank to Claire Henocq and to full EUMETSAT S3-OPIT team.

http://step.esa.int/main/toolboxes/snap/

	./s3GetFilesFromODA_pub.sh [download files from O	DA
using bash/wget]		
MANDATORY:		
-d <oda dataset="">: e</oda>	e.g. PDGS_SL_1_RBTNR, PDGS_OL_1_EFRNR	ί,
PDGS_SL_2_WST	_NR,	
-f <filter by="" s3="" safe<="" td=""><td>NAME>: e.g data start stop (e.g.</td><td></td></filter>	NAME>: e.g data start stop (e.g.	
20160523T102110 20	0160523T102410); orbit number (e.g194_),	
OPTIONAL:		
-c <filter by="" s3="" safe<="" td=""><td>E CONTENT>: comma separated list of filename patter</td><td>ns</td></filter>	E CONTENT>: comma separated list of filename patter	ns
	.g. "*.xml"; "*.xml,*_in.nc"; or predefined FILTERS	
	T IR; F OL 1 EFR RGB,)	
· · ·	-p <oda password="">; -s <output directory=""></output></oda>	
	n download only display full wget command line	
	n download only display full wget command line	


Note: Due to the current processing implementation following flags cannot be accurately remapped to instrument grid:

bayes flags: all

• confidence flags: unfilled, day, twilight, snow • cloud flags: histogram tests, spatial coherence, view difference tests

Default value for this flags is set to False (zero)!

300 400 500 600 700 900 900 900 900 900 900 9	
image grid nadir – swath edge	instrument grid nadir – swath edge
mage grid tx mage grid in nstrument grid in - edge pixels - det _0 nstrument grid in - edge pixels - det _1	 instrument - detector 0 - in instrument - detector 1 - in

