

NOAA ACSPO Himawari-8 SST Product

Sasha Ignatov

Maxim Kramar, Boris Petrenko, Prasanjit Dash*, Yury Kihai, Irina Gladkova, Xingming Liang, Yanni Ding

NOAA; GST Inc; CCNY; CIRA (*now with EUMETSAT)

Support by US GOES-R and NOAA PSDI

NOAA pioneered SST regression algorithms..

- 1970/80s: Multi-Channel SST (MCSST)
- 1990s: Non-Linear SST (NLSST)
- .. and operational SST products
 - 1981: Polar (from NOAA-7/AVHRR2)
 - 1999: Geo (from GOES-8/Imager)

Historically, the polar and geo SST systems at NOAA have evolved independently and diverged over time

Currently, NOAA is consolidating SST processing under the ACSPO (Advanced Clear-Sky Processor for Ocean) Enterprise System

The objective is to facilitate data production (Management / Research & Development / Operations/ Maintenance/ Cost), monitoring and use (unified formats/ performance/ archives/..)

ACSPO SST from Himawari-8 (H8) AHI

- Himawari-7 (MTSAT2) SST was produced by the NOAA heritage geo system
- At the same time, ACSPO Team worked on GOES-R SST Algorithm (will launch in Oct 2016)
- H8 launched in Oct 2014 with AHI sensor onboard (AHI is a sister sensor to GOES-R ABI)
- NOAA management asked us to produce AHI SST using ACSPO system
 - to replace the H7 SST in the NOAA geo-polar blended
 - H8 SST was also viewed as GOES-R risk reduction

ACSPO H8 SST

• Current Status

- 1 Jul 2015: Experimental ACSPO L2P SST (10min, swath projection) produced, 46 GB/day
- L2P files and AHI vs. VIIRS images available online <u>ftp://ftp.star.nesdis.noaa.gov/pub/sod/sst/acspo_data/</u> <u>l2/ahi/</u>
- Data from 1 Apr 2015 monitored in SQUAM <u>www.star.nesdis.noaa.gov/sod/sst/squam/GEO/</u> along with NOAA H7 and JAXA H8 SSTs
- 4 Dec 2015: AACSPO SST assimilated into geopolar blended (hourly; 5/6 granules not used)

• Ongoing Work

- Generate 1hr H8 L2C/L3C (4-6GB/day) and archive
- Improve clear-sky mask based on pattern recognition and generate thermal fronts product
- Revisit SST algorithm, ensure sensitivity = 1
- Support GOES-R Algorithm & Cal/Val (Oct'2016)

AHI/ABI Bands

GOES-R/ABI Himawari/AHI SST Bands

Band	AHI/ABI			VIIRS			MODIS		
	В	CW (µm)	SR (μm)	В	CW (µm)	SR (µm)	В	CW (µm)	SR (µm)
IR37	7	3.85	3.59-4.11	M12	3.70	3.66-3.84	20	3.75	3.66-3.84
IR86	11	8.60	8.12-9.07	M14	8.58	8.40-8.70	29	8.55	8.40-8.70
IR10	13	10.45	9.90-10.96						
IR11	14	11.20	10.31-12.18	M15	10.73	10.26-11.26	31	11.03	10.78-11.28
IR12	15	12.35	11.17-13.66	M16	11.85	11.54-12.49	32	12.02	11.77-12.27

Temporal AHI Sampling: 10min

Spatial resolution in IR bands (at nadir): 2 km

ABI/AHI SST Bands

- Three bands in the longwave IR (vs. 2 on polar sensors) + 8.6 μm band

• The 3.9 band is shifted to longwave and covers two N2O absorption lines

NOAA ACSPO H8 SST

ACSPO Algorithms

ACSPO Clear-Sky Mask (Petrenko et al., JTECH, 2010)

- ✓ Current ACSM is "in-pixel" (with the exception of spatial uniformity test)
- ✓ Somewhat overly conservative (especially in dynamic and coastal areas)
- ✓ Analyses of spatial / temporal context underway to improve coverage

ACSPO Single-Sensor Error Statistics (SSES; Petrenko et al, JTECH, 2016)

- ✓ SSES derived against *in situ* data with piece-wise regressions as a function of Fisher distance
- ✓ Correction for SSES biases improves consistency with *in situ* data (NB: monitored in SQUAM and shown here are <u>non</u>-SSES bias corrected)
- ✓ We recommend to SSES-bias correct for the use in L4s blending with *in situ* and aiming at foundation SST (e.g., CMC, OSTIA, GAMSSA, Reynolds)

SST algorithm: Regression vs. Drifters/Trop. Moorings (Petrenko et al, JGR 2014)

- ✓ OSI-SAF-like algorithms (which focus on VZA dependencies) are employed in ACSPO, as opposed to MODIS/PF-like (which focus on water-vapor correction)
- ✓ Unlike polar algorithms (stratified by day/night), one H8 algorithm is used
- \checkmark The shortwave 3.9 μm band is not used in the regression

AHI SST Algorithm

$$T_{S} = a_{0} + a_{1}T_{10.4} + a_{2}(T_{10.4} - T_{12}) + [a_{3}(T_{10.4} - T_{8.6}) + a_{4}(T_{10.4} - T_{11.2})]S_{\theta} + [a_{5}(T_{10.4} - T_{8.6}) + a_{6}(T_{10.4} - T_{11.2}) + a_{7}(T_{10.4} - T_{12.4})]T_{S}^{0}$$

 $T_{8.6}, T_{10.4}, T_{11.2}, T_{12.4}$ $S_{\theta} = 1/\cos(\theta)$ T_{S}^{0} a observed BTs at 8.6, 10.4, 11, and 12.4 μ m where θ is the satellite view zenith angle first guess SST (in °C) (CMC L4) regression coefficients (estimated from matchups)

The ACSPO SST is anchored to buoys → it is sub-skin (not biased -0.17K)

Currently, only SSTs with QL=5 are recommended to users and used in SQUAM. (Per G16 recommendation, work is underway to revisit – see Petrenko et al. poster)

- Single SST equation is used for AHI (unlike polar algorithms, which use different equations at night and during the daytime)
- This minimizes SST and clear-sky mask discontinuities in the terminator zone and facilitates analysis of the diurnal cycle
- The AHI 3.9 μ m band proved inefficient for SST retrievals and is not used in the SST algorithm (apparently, it was shifted back to 3.7 μ m on ABI need to verify)

Evaluation of H8 SSTs in SQUAM

www.star.nesdis.noaa.gov/sod/sst/squam/GEO/

20 July 2015

VAL BIAS wrt. *i*Quam Drifters + Tropical Moorings

- ACSPO H8 SST is close to meeting JPSS and H8 specs. Tighter than H7 SST
- JAXA H8 SST is a skin product. -0.17K bias is expected. JAXA changed algorithm in Dec 2015. Remains biased ~-0.15K cold (on the top of the expected -0.17K bias)

VAL SD wrt. *i*Quam Drifters + Tropical Moorings

- SD smaller at night when skin SST closer to bulk buoy, and larger during daytime
- H8 ACSPO SDs range from ~0.4K (Night) to ~0.6K (Day). Close to JPSS/H8 specs
- SDs for H8 ACSPO are smaller than for the NOAA heritage H7 and H8 JAXA SSTs. Outliers in JAXA SSTs reduced in 2016

Clear-Sky Coverage in the H7/H8 SST Products

- H8 ACSPO Clear-Sky Coverage exceeds NOAA H7 and initial JAXA H8
- After fixes in Dec 2015, JAXA coverage is comparable to ACSPO
- Large-scale variations in clear-sky fraction occur in sync in the three products, and are likely due to real changes in cloud coverage over the Himawari domain

Ongoing Work – 1:

Ensure Sensitivity to true SST = 1; Accurately Resolve Diurnal Cycle & Spatial Gradients

Diurnal Cycle in Retrieved SST Averaged over FD

- Sensitivity to true SST (Merchant et al., GRL 2009) matters!
- Should we output sensitivity in GDS2?
- The ACSPO, JAXA, and H7 systems all run RTM, so the "sensitivity infrastructure" is there
- The shape of the diurnal cycle: Similar between H8 ACSPO and JAXA, noisy in H7
- ACSPO (& H7) SSTs agree with CMC at night as expected, and deviate during daytime
- At night, JAXA SST is biased -0.3K cold (-0.17K expected, -0.15K unexplained).
- During daytime, JAXA and ACSPO are offset by -0.45K
- Diurnal amplitudes are ~0.55K in ACSPO H8; ~0.35K in JAXA; 0.15K in H7

NOAA

Diurnal Cycle in Retrieved SST Averaged over FD

- Sensitivity to true SST (Merchant et al., GRL 2009) matters!
- Should we output sensitivity in GDS2?
- The ACSPO, JAXA, and H7 systems all run RTM, so the "sensitivity infrastructure" is there
- The shape of the diurnal cycle: Similar between H8 ACSPO and JAXA, noisy in H7
- ACSPO (& H7) SSTs agree with CMC at night as expected, and deviate during daytime
- At night, JAXA SST is biased -0.3K cold (-0.17K expected, -0.15K unexplained).
- During daytime, JAXA and ACSPO are offset by -0.45K
- Diurnal amplitudes are ~0.55K in ACSPO H8; ~0.35K in JAXA; 0.15K in H7

NOAA

OSTIA Diurnal and ACSPO wrt CMC, Himawari-8 AHI, 8 January 2016, 5:00 UTC (Day)

OSTIA_SKIN and ACSPO_SUBSKIN show different yet similar global biases with respect to CMC OSTIA_SKIN is -0.24K colder (-0.17K comes from "skin"). Two products show close global SDs

6 June 2016

1011:

NOAA ACSPO H8 SST

Thanks to UKMO James While, ¹⁸ Matt Martin, Chongyuan Mao

Bias & SD in OSTIA and ACSPO – CMC SST Himawari-8 AHI, 1-15 January 2016

Diurnal cycle in all products suppressed (function of UTC rather than local time). OSTIA_SKIN: Biased ~-0.17K cold wrt CMC, as expected. ACSPO_subsin: ~50% more diurnal warming than OSTIA_SKIN
ACSPO_DEPTH is closest to CMC at night and least affected by diurnal warming

1011:

NOAA ACSPO H8 SST

Thanks to UKMO James While, ¹⁹ Matt Martin, Chongyuan Mao

Ongoing Work – 2:

Use Pattern Recognition to Improve Coverage in Dynamic Areas and Derive Thermal Fronts

H8 AHI SST, 28 May 2016 @16:10UTC

ACSPO Clear-Sky Mask is overly conservative

Future version of ACSPO will utilize pattern recognition to fix this for VIIRS

Next step will be implementation of pattern recognition to H8 SST

S-NPP VIIRS SST, 28 May 2016 @16:10UTC

ACSPO Clear-Sky Mask is overly conservative

Future version of ACSPO will utilize pattern recognition to fix this for VIIRS

Next step will be implementation of pattern recognition to H8 SST

Ongoing Work – 3:

Use Temporal Context to Increase SST Domain, Reduce Noise, and Generate L2C/L3C Product

L2C ("Collated in Time") AHI SST Product: 1 hr

L2C "Collated" AHI SST Product

1011:

- The users cannot use 10min data and the archives cannot archive, due to large size
- The L2C product will reduce the data volume to ~6GB/day (from 45 GB/day in L2P)
- L2C: in original swath projection but collated in time (reported @1hr not 10min)
- The "temporal noise" will be reduced by fitting a smooth curve through cloud free data
- Many cloud gaps will be filled "from temporal context" (but areas with persistent cloud will still remain data void)

Summary

NOAA ACSPO H8 SST Product

- ✓ Successfully replaced the H7 SST as input in geo-polar blended
- ✓ Risk reduction exercise for GOES-R

Product performance

- ✓ Meets formal NOAA requirements for accuracy (±0.2K) and precision (0.6K)
- ✓ Realistically resolves SST diurnal cycle
- ✓ Improves upon NOAA heritage H7 SST (improved sensor, algorithms)
- ✓ Compares favorably with JAXA H8 product

Work ahead

- ✓ Derive L2C/L3C of reduced size & archive
- ✓ Revisit SST algorithm, ensure sensitivity to true SST = 1
- ✓ Implement pattern recognition algorithms, derive thermal fronts

Support launch of GOES-R in October 2016