SEA SURFACE TEMPERATURE ALGORITHM OF **GEO-KOMPSAT-2A / ADVANCED METEOROLOGICAL IMAGER**

Kyung-Ae Park⁽¹⁾, Hye-Jin Woo⁽²⁾, Sung-Rae Chung⁽³⁾, Seon-Kyun Baek⁽³⁾, Byung-II Lee⁽³⁾

⁽¹⁾ Dep. of Earth Science Education, Seoul National University, Seoul, Korea, ⁽²⁾ Dep. of Science Education, Seoul National University, Seoul, Korea, ⁽³⁾ National Meteorological Satellite Center, KMA, Chungbuk, Korea

Abstract : As the second geostationary satellite of Korea, following on the Communication, Ocean and Meteorological Satellite (COMS), GEO-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) is launched to be positioned at 128.2°E over the earth equator in October 2018. Advanced Meteorological Imager (AMI) on the GK-2A will have sixteen channels similar to ABI of GOES-16 and AHI of Himawari-8/9. The spatial resolution of infrared channel observation for the estimation of sea surface temperature (SST) is about 2 km and temporal interval is about 10 minute in the full-disk region for real-time operational purposes. In this study, we introduce current status of operational GK-2A/AMI SST algorithm development performed by SNU team and Korea Meteorological Administration (KMA) during the past few years. Both hybrid algorithm using RTM results and multi-band algorithm have been applied for SST retrieval using 8.6, 10.4, 11.2, and 12.3 µm channel data of Himawari-8/AHI as proxy data. In order to reduce SST errors, related to failure in the removal procedure of cloud or cloud-contaminated pixels, a series of quality control processes are developed using real-time RTM data and SST climatology data. Quality-controlled SST data are incorporated to produce a daily SST, 5-day and 10-day SST composites. In addition, daily blended SST composite image is produced using all available SST data from multi satellites such as Himawari-8, NOAA-18/19, and AMSR2 as well as all in-situ measurements from surface drifters and moored buoys around Korean peninsula.

Pre-processing for SST Retrieval

Matchup Procedure

• Data

• Himawari-8/AHI Channel data (Ch. 11,13,14,15)

• Buoy measurements (water temperature, wind speed, wind direction, air temperature, etc.)

• Clear-sky BT (Ch. 11,13,14,15)

SST Retrieval Coefficients

• Static/Dynamic Coefficients

I Multi band	т22		3					
MSST = C	1*T13 + C2	2*(TI3-TI5)) + C3*(TI3	-TII)*(SECS	5ZA-I) + C4	*(TI3-TI4) [;]	*(SECSZA-I)
+ (C5*FGSST*	(T`I3-TII) +	- C6*FĠSST	*(TI3-TI4)	+ C7*FGSS ⁻	Г*́(ТІЗ-ТІ́5)) + C8	
II. Multi-chan	nel SST (Sp	olit)						
MCSST =	CI*TI3 + (C2*(TI3-TI	5) + C3*(TI	3-T15)*(SEC	CSZA-I) + C	24		
III. Non-linea	r SST (Split	:)						
NLSST = (CI*TI3 + C	2*FGSST*(TI3-TI5) +	C3*(TI3-TI	5)*(SECSZA	A-I) + C4		
IV. Hybrid SS	Т			·				
HSST = F	GSST + CI	*(TI3-TCSI	3) + C2*FG	SST*((TI3-	CSI3)-(TI5	5-TCS15))		
+ C	3*((TI3-T0	CŠ13)-(T15-	TCS15))*(SE	ECSZA-I) +	C4			
Algorithm :	CI	C2	C3	C4	C5	C6	C7	C8
Algorithm : MSST :	CI 0.965554	C2 -1.030181	C3 0.803268	C4 1.775060	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D):	CI 0.965554 1.010963	C2 -1.030181 1.320451	C3 0.803268 0.396917	C4 1.775060 -0.825112	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D): MCSST(N):	CI 0.965554 1.010963 0.989462	C2 -1.030181 1.320451 1.357500	C3 0.803268 0.396917 0.384146	C4 1.775060 -0.825112 -0.394404	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D): MCSST(N): MCSST :	CI 0.965554 1.010963 0.989462 0.998357	C2 -1.030181 1.320451 1.357500 1.340641	C3 0.803268 0.396917 0.384146 0.386814	C4 1.775060 -0.825112 -0.394404 -0.569528	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D): MCSST(N): MCSST : NLSST(D):	C1 0.965554 1.010963 0.989462 0.998357 0.887705	C2 -1.030181 1.320451 1.357500 1.340641 0.041174	C3 0.803268 0.396917 0.384146 0.386814 0.383038	C4 1.775060 -0.825112 -0.394404 -0.569528 2.630488	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D): MCSST(N): MCSST : NLSST(D): NLSST(N):	C1 0.965554 1.010963 0.989462 0.998357 0.887705 0.868111	C2 -1.030181 1.320451 1.357500 1.340641 0.041174 0.042398	C3 0.803268 0.396917 0.384146 0.386814 0.383038 0.372000	C4 1.775060 -0.825112 -0.394404 -0.569528 2.630488 2.99433	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254
Algorithm : MSST : MCSST(D): MCSST(N): MCSST : NLSST(D): NLSST(N): NLSST :	CI 0.965554 1.010963 0.989462 0.998357 0.887705 0.868111 0.876111	C2 -1.030181 1.320451 1.357500 1.340641 0.041174 0.042398 0.041873	C3 0.803268 0.396917 0.384146 0.386814 0.383038 0.372000 0.374585	C4 1.775060 -0.825112 -0.394404 -0.569528 2.630488 2.99433 2.846422	C5 -0.056463	C6 -0.004013	C7 0.078980	C8 4.67254

- SST climatology, First-guess SST, and Cloud Mask
- Area: 70°S~70°N, 60°E ~ 130°E
- Period: 2016.8.1~2017.7.31
- Temporal interval : < 10 minutes
- Spatial criteria : < 2 km (pixel size of satellite)

Fig. (a) in-situ SST and satellite-observed BT on th 10.4- µm collocation points.

Fig. Spatial distribution of errors of (a) Multi-band SST, (b) MCSST, (c) NLSST, and (d) Hybrid SST

This work was supported by "Development of Geostationary Segment" program funded by NMSC (National Meteorological Satellite Centre) of KMA (Korea Meteorological Administration).

- respectively..