

OSI SAF Sea Surface Temperature reprocessing of MSG/SEVIRI archive.

S. Saux Picart, G. Legendre, A. Marsouin, S. Péré, H. Roquet

GHRSST annual meeting / Darmstadt / 4-8 June 2018

Introduction

Context: Reprocessing of Sea Surface Temperature from MSG SEVIRI archive was planned under the second phase of OSI SAF scientific development.

Objective: Provide users with a homogeneous SST time series.

Deliverable:

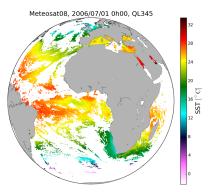
- Period of the reprocessing: 2004-2012 (for now).
- Hourly level 3 dataset.
- \blacktriangleright 60S-60N and 60W-60E on a 0.05° regular grid.
- Sub-skin temperature (calibrated using drifting buoys measurements at 20 cm depth).

Outline:

- 1. Algorithm and methods
- 2. Assessment of the dataset
- 3. Conclusion and futur work

Algorithm and methods: SST

Algorithm: SST =
$$a T_{10.8} + (b S_{\Theta} + c T_{clim})(T_{10.8} - T_{12.0}) + d + e S_{\Theta}$$

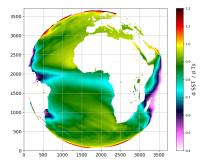

Data:

- SST climatology derived from OSTIA daily SST re-analyses
- MSG-1 and MSG-2 SEVIRI BTs reprocessed and near real-time from EUMETSAT central facility
- Cloud mask provided by CM SAF

Parameters are determine by regression using simulations of BTs.

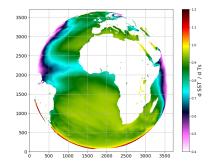
Processing:

- Full spatial and temporal resolution
- All clear sky pixels are processed



Algorithm and methods: Sensitivity of the SST algorithm

Sensitivity of the estimated SST (\hat{x}) to a change in true SST (x):


$$\frac{d\widehat{x}}{dx} = \sum_{c=1}^{n} \frac{\partial R}{\partial y_c} \frac{\partial y_c}{\partial x}$$

where R is the retrieval algorithm and y_c are the BTs.

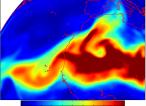
2010 01 Meteosat 09

2010 07 Meteosat 09

Algorithm and methods: Atmospheric Saharan dust correction

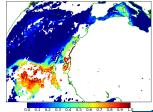
Saharan Dust Index (Merchant et al., 2006)

Night time retrieval: SDI_{night} = $S_1(T_{3.9} - T_{8.7} + \Gamma_1) + S_2(T_{10.8s} - T_{12.0s} + \Gamma_2) + S_3$


 S_i coefficients determined by regression using BT simulations.

Day time retrieval: $SDI_{day} = DS_1 T_{8.7} + DS_2 T_{10.8} + DS_3 T_{12.0} + DS_4 T_{13.4} + DS_5$

 DS_i coefficient determined by local regression of night time SDI with channels available during daytime.

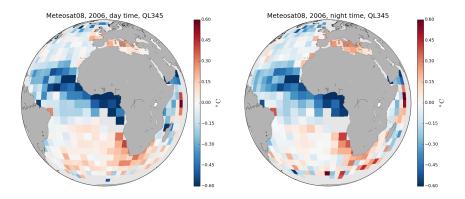

 a_i coefficients determined by regression using a dataset of

Dust AOD from MACC 00h:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Night time SDI 00h:

O


SDI correction:

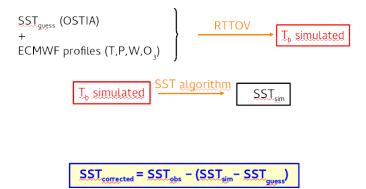
match-ups.

 $\varphi(\text{SDI}) = a_0 + a_1 \text{SDI} + a_2 \text{SDI}^2$

Algorithm and methods: Regional/seasonal biases

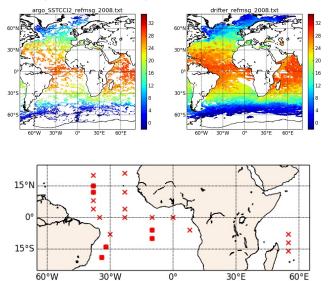
Binned map of (Satellite SST - in situ SST)

Regional and seasonal biases:


- Cool bias in the inter-tropical zone.
- Warm bias around South African coast and Mediterranean sea.

Algorithm and methods: bias correction

Algorithm correction from Le Borgne et al. (2011):


Method relying on simulations of brightness temperature using atmospheric profiles from NWP model.

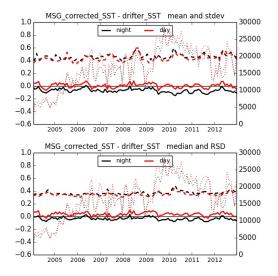
Assessment: data

ERA-clim dataset (Atkinson et al., 2014)

Assessment: Global statistics

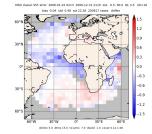
Comparison to drifting buoys:

QL 3-4-5, $\Delta t \leq 15 \min$, $|SST_{insitu} - SST_{clim}| \leq 5K$

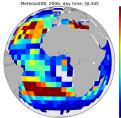

		mean SST	nb	mean	SD	median	RSD
Night	Meteosat-8	22.23	425132	-0.06	0.44	-0.03	0.35
	Meteosat-9	22.67	1299635	-0.08	0.48	-0.04	0.38
	ALL	22.56	1724767	-0.08	0.47	-0.04	0.37
Day	Meteosat-8	22.38	463219	0.01	0.42	0.04	0.34
	Meteosat-9	22.80	1383170	0.00	0.46	0.04	0.36
	ALL	22.69	1846389	0.00	0.45	0.04	0.35

Robust standard deviation (RSD):

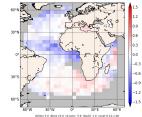
 $RSD = (75^{th} percentile(\Delta SST) - 25^{th} percentile(\Delta SST))/1.348$


Assessment: Monthly statistics

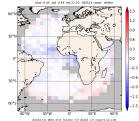
Assessment: Spatial distribution of the bias


2006 - Median of the SST difference per box of $5\times5^\circ$

Day


Night

🔁 OSI SAF



MSG classic SST error 2006-01-01 0052 2006-12-31 2357 2so 90.0-179.8 QL 3-5 mb>16 bias-0.05 std 0.51 sst 22.20 180521 cases drifter

MSG corrected SST error 2006-01-01 0052 2006-12-31 2357 250 90.0-179.8 QL 3-5 nb>16 higs -0.05 and 0.44 and 22 20 100522 crosses defler.

Meteosat08. 2006. nipit time. 0.1345

FRANCE

Assessment:Climate data record type

Following the Climate Data Assessment Framework, CDR-TAG_CDAF v1.0.5

Systematic effects:

- Global median of $SST_{sat} SST_{in situ}$: Overall systematic difference.
- Geographical variation: STD of median computed on space scales of about 1000km.

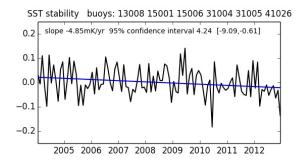
Non-systematic effects: Robust STD after removing systematic effects.

Relative to drifting buoys measurements:

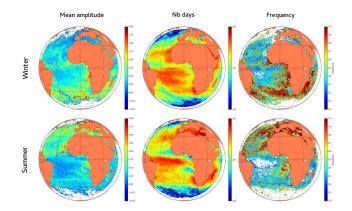
	Meteosat-8	Meteosat-9	All
Global median (K)	0.01	0.00	0.00
Geographical variation (K)	0.10	0.12	0.11
Dispersion (K)	0.33	0.36	0.35

Relative to Argo floats measurements:

	Meteosat-8	Meteosat-9	All
Global median (K)	0.10	0.11	0.11
Geographical variation (K)	0.09	0.13	0.11
Dispersion (K)	0.39	0.38	0.38



Assessment: Climate data record type


Stability: Degree of invariance over time of the mean error

- Using moored buoys from Global Tropical Moored Buoy Array
- Data available for 75% of the period
- Deseasonalized monthly mean difference to moored buoy measurements (each location)
- Average of all locations

Diurnal variability

Mean amplitude: $mean(max(\Delta SST = SST_{time} - SST_{ref}))$ Nb days: number of days when Mean amplitude could be computed Frequency: Nb days ($\Delta SST > 0.5K$)/Nb days

Conclusions/perspectives

Good quality and homogeneous dataset

- L3C are available on Ifremer ftp (information on http://osi-saf.eumetsat.int)
- L2 are available on demand
- Matchup dataset can also be shared

Future work:

- Reprocessing using OE: will help us decide for the future processing methodologies to be used for MTG and Metop-SG.
- We would like to make the dataset longer

