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QUESTION
•Drifting buoy numbers, coverage 

and reporting frequencies over the 
past decade+ 
•We now obtain very statistically 

robust distributions of satellite-in-
situ matches
• Is there more information in these 

distributions than we have hitherto 
extracted?
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LOGIC OF STUDY
•Consider how to model satellite-drifter SST differences

•In nominal conditions (“clear skies”)
•In contaminated conditions 

•e.g., cloud, aerosol – hereafter will just say “cloud”
•Propose a distributional model and its parameters
•Fit this to examples of match-up data
• Interpret the parameters in physical terms
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SST ERROR DISTRIBUTIONS 
• Part of the satellite-drifter difference arises from their errors
•We typically assume the errors should be normally distributed
• But … uncertainty is not constant
• A sum of different normal distributions is not a normal distribution
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Solid lines: ARC SST retrieval 
uncertainty as a function
of atmospheric water 
vapour, different channel
combos, simulated. 

Embury & Merchant, 2011
10.1016/j.rse.2010.11.020



FIT CLEAR SKY DIFFERENCES USING T-DIST
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• Synthetic data combining two 
normal distributions

• Student’s t distribution can 
better capture the shape



STUDENT T DISTRIBUTION
• Generalized normal distribution function, with a shape parameter than can put more weight into the 

wings and peak
• Three t distributions with zero mean and unit standard deviation:
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RESIDUAL CLOUD ERRORS
•When clear-sky retrievals are applied to contaminated pixels (e.g., residual cloud) the 

result is usually cold => “cold tail”

• Choose a distribution that focusses on errors ≳ the clear-sky uncertainty, " (reduces 
degeneracy of the solution)
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#(% < 0) ∝ exp − %
. 1 − exp − %

"
0 0

# % ≥ 0 = 0

Only characterize errors
beyond the main peak
with this term

Extreme errors
are less common

Only cold errors
are modelled



SAT-BUOY DIFFERENCE MODEL
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! = #$%&' + #)*+,- + #,./*0 + 1234#,&5+*)

6~8(0,1)

1234 = >
1 for 6 < C

0 for 6 ≥ C

∴ 1234#,&5+*)≠ 0 for a fraction C

Parameters: L, M, N Parameter: O



ESTIMATING PARAMETERS
•Use Bayes theorem – but hard problem:

•Multivariate, nonlinear, integration across peaky functions

• Calculate
! " # ∝ !∗ # " ! "

• Sample the parameter space, ", using Markov Chain Monte Carlo

•Minimally informative priors
•Mostly uniform
•Contamination fraction is a-priori <<100%
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METOP-A GAC FROM SQUAM
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Squam histogram data provided by Xinjia Zhou and Sasha Ignatov

Parameter Estimate ± 90% CI
Clear-sky mean / K 0.047 0.001

Clear-sky St.Dev / K 0.416 0.001

Shape 6.8 0.1
Cloud % 2.6 0.2
Cloud scale / K 0.25 0.02

The “clear sky” bias is small (0.047 K) 
and slightly more positive than the
distribution mean (0.033 K). The “clear
sky” standard deviation is smaller than
the distribution SD (0.43 K).

DAY



METOP-A GAC FROM SQUAM
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Squam histogram data provided by Xinjia Zhou and Sasha Ignatov

Parameter Estimate ± 90% CI
Clear-sky mean / K 0.047 0.001

Clear-sky St.Dev / K 0.416 0.001

Shape 6.8 0.1
Cloud % 2.6 0.2
Cloud scale / K 0.25 0.02

∞ = normal
2 = extreme non-normal
6.8 = > tails are quite heavy
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METOP-A GAC FROM SQUAM
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Squam histogram data provided by Xinjia Zhou and Sasha Ignatov

Parameter Estimate ± 90% CI
Clear-sky mean / K 0.047 0.001

Clear-sky St.Dev / K 0.416 0.001

Shape 6.8 0.1
Cloud % 2.6 0.2
Cloud scale / K 0.25 0.02

DAY

Cold-tail (“cloud/aerosol”) affects
~2.6% of matches. For the affected
matches, mean additional bias is 
-0.6 K, which implies -0.015 K bias in 
the whole distribution – very small.



ACSPO – CCI COMPARISONS
Case Project Clear-sky 

mean / K
Clear-sky 
SD / K

Shape Cloud % Cloud 
scale / K

Cloud bias 
overall / K

! σ # $ % &

Metop A 
Day

ACSPO 0.047 0.42 6.8 3% 0.25 -0.015

CCI 0.043 0.35 6.4 11% 0.26 -0.06

Metop A 
Night

ACSPO 0.091 0.29 4.7 20% 0.26 -0.09

CCI 0.073 0.27 3.7 26% 0.42 -0.17
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SST CCI retrievals compare favourably, but ACSPO 
cloud detection looks to be better.



VIIRS FROM SQUAM
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• Highly symmetric – “extra” tail <0.1% of data (negligible)
• Highly non-Gaussian – shape parameter ~4 in both cases
• Heavy symmetric tails



SLSTR AND CLOUD DETECTION
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Histogram data provided by Gary Corlett (SLSTR Mission Performance Centre)

• Initial operations of SLSTR used solely a threshold-based mask
• Since April 2018, the operational data also have a Bayesian clear-sky 

probability estimate (Merchant et al., 2005)
• Use of the Bayesian reduces cloud-related bias of whole distribution by 0.08 K 

Bayes:
! = 0.21 K
' = 13%

* = −0.06 K

Threshold:
! = 0.21 K
' = 14%

* = −0.14 K

Single view
3-channel
Night time SST



CONCLUSIONS
• Five parameter model can be fitted to observed validation distributions
• Model has physical interpretation

• Central peak, described by Student t distribution, interpreted as the difference distribution 
under ideal retrieval conditions (clear sky) where uncertainty varies between different “families” 
within the data

• Exponential cold tail (usually attributed to cloud, perhaps also aerosol)
• The cold-tail fraction in the case of GAC night-time is high but plausible given compositing of 

pixels in GAC
• Parameters describing distribution fit with physical expectations

• Night-time SSTs better than day-time
• Less cloud contamination in day scenes

• Allows more insightful and objective assessment of relative performance of retrievals and cloud 
screening
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